Loading…

Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery

Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-d...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2022, Vol.41 (5), p.1616-1625
Main Authors: Yu, Cheng-Xin, Li, Yu, Wang, Zhao-Hua, Wang, Xin-Ran, Bai, Ying, Wu, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33
cites cdi_FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33
container_end_page 1625
container_issue 5
container_start_page 1616
container_title Rare metals
container_volume 41
creator Yu, Cheng-Xin
Li, Yu
Wang, Zhao-Hua
Wang, Xin-Ran
Bai, Ying
Wu, Chuan
description Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g −1 , the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g −1 at 50 mA·g −1 . This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials. Graphical abstract
doi_str_mv 10.1007/s12598-021-01893-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645878539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645878539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33</originalsourceid><addsrcrecordid>eNp9kMtqGzEUhkVoIKmbF8hKkLUaaTSayzKY3iDQRdK1OJKObJnxyJE0C_st-saV60J2XZ0D_w0-Qu4F_yw47x-zaNQ4MN4IxsUwSna6Irdi6HrWi0F9qD_nVVKNuCEfc95x3rZdx2_J75clebBIcd6EGTGFeUMNZHQ0zjTMNIeyUJzQlhTZIU7HffWcoIQql0hNjLnQssXqDSXARNdxmeLeBEvR-2ADzvZIo6dbSI5aSKYGYY4OqY-J5ujCsmfnNgOlYDp-Itcepox3_-6K_Pr65XX9nT3__PZj_fTMrBRjYZ2Qo2xc64Db0QxcGSMcgGpBDWZE7yQfpQXh0PQSJPfGd9g11vXSKA9SrsjDpfeQ4tuCuehdXNJcJ3XTtWroB1UXVqS5uGyKOSf0-pDCHtJRC67P6PUFva7o9V_0-lRD8hLKhzNPTO_V_0n9AVkWi5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645878539</pqid></control><display><type>article</type><title>Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery</title><source>Springer Nature</source><creator>Yu, Cheng-Xin ; Li, Yu ; Wang, Zhao-Hua ; Wang, Xin-Ran ; Bai, Ying ; Wu, Chuan</creator><creatorcontrib>Yu, Cheng-Xin ; Li, Yu ; Wang, Zhao-Hua ; Wang, Xin-Ran ; Bai, Ying ; Wu, Chuan</creatorcontrib><description>Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g −1 , the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g −1 at 50 mA·g −1 . This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-021-01893-z</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Anodes ; Biomaterials ; Carbon ; Chemical bonds ; Chemistry and Materials Science ; Cycles ; Efficiency ; Electrode materials ; Electrolytes ; Energy ; Energy storage ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; Original Article ; Physical Chemistry ; Polymerization ; Sodium-ion batteries ; Solid electrolytes</subject><ispartof>Rare metals, 2022, Vol.41 (5), p.1616-1625</ispartof><rights>Youke Publishing Co.,Ltd 2022</rights><rights>Youke Publishing Co.,Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33</citedby><cites>FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33</cites><orcidid>0000-0003-3645-4357 ; 0000-0003-3878-179X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Cheng-Xin</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Wang, Zhao-Hua</creatorcontrib><creatorcontrib>Wang, Xin-Ran</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><title>Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g −1 , the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g −1 at 50 mA·g −1 . This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials. Graphical abstract</description><subject>Anodes</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Chemistry and Materials Science</subject><subject>Cycles</subject><subject>Efficiency</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Polymerization</subject><subject>Sodium-ion batteries</subject><subject>Solid electrolytes</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqGzEUhkVoIKmbF8hKkLUaaTSayzKY3iDQRdK1OJKObJnxyJE0C_st-saV60J2XZ0D_w0-Qu4F_yw47x-zaNQ4MN4IxsUwSna6Irdi6HrWi0F9qD_nVVKNuCEfc95x3rZdx2_J75clebBIcd6EGTGFeUMNZHQ0zjTMNIeyUJzQlhTZIU7HffWcoIQql0hNjLnQssXqDSXARNdxmeLeBEvR-2ADzvZIo6dbSI5aSKYGYY4OqY-J5ujCsmfnNgOlYDp-Itcepox3_-6K_Pr65XX9nT3__PZj_fTMrBRjYZ2Qo2xc64Db0QxcGSMcgGpBDWZE7yQfpQXh0PQSJPfGd9g11vXSKA9SrsjDpfeQ4tuCuehdXNJcJ3XTtWroB1UXVqS5uGyKOSf0-pDCHtJRC67P6PUFva7o9V_0-lRD8hLKhzNPTO_V_0n9AVkWi5E</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yu, Cheng-Xin</creator><creator>Li, Yu</creator><creator>Wang, Zhao-Hua</creator><creator>Wang, Xin-Ran</creator><creator>Bai, Ying</creator><creator>Wu, Chuan</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3645-4357</orcidid><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></search><sort><creationdate>2022</creationdate><title>Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery</title><author>Yu, Cheng-Xin ; Li, Yu ; Wang, Zhao-Hua ; Wang, Xin-Ran ; Bai, Ying ; Wu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Chemistry and Materials Science</topic><topic>Cycles</topic><topic>Efficiency</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Polymerization</topic><topic>Sodium-ion batteries</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Cheng-Xin</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Wang, Zhao-Hua</creatorcontrib><creatorcontrib>Wang, Xin-Ran</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Cheng-Xin</au><au>Li, Yu</au><au>Wang, Zhao-Hua</au><au>Wang, Xin-Ran</au><au>Bai, Ying</au><au>Wu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022</date><risdate>2022</risdate><volume>41</volume><issue>5</issue><spage>1616</spage><epage>1625</epage><pages>1616-1625</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g −1 , the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g −1 at 50 mA·g −1 . This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-021-01893-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3645-4357</orcidid><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2022, Vol.41 (5), p.1616-1625
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2645878539
source Springer Nature
subjects Anodes
Biomaterials
Carbon
Chemical bonds
Chemistry and Materials Science
Cycles
Efficiency
Electrode materials
Electrolytes
Energy
Energy storage
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
Original Article
Physical Chemistry
Polymerization
Sodium-ion batteries
Solid electrolytes
title Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20engineering%20based%20on%20in%20situ%20electro-polymerization%20to%20boost%20the%20initial%20Coulombic%20efficiency%20of%20hard%20carbon%20anode%20for%20sodium-ion%20battery&rft.jtitle=Rare%20metals&rft.au=Yu,%20Cheng-Xin&rft.date=2022&rft.volume=41&rft.issue=5&rft.spage=1616&rft.epage=1625&rft.pages=1616-1625&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-021-01893-z&rft_dat=%3Cproquest_cross%3E2645878539%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645878539&rft_id=info:pmid/&rfr_iscdi=true