Loading…
Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery
Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-d...
Saved in:
Published in: | Rare metals 2022, Vol.41 (5), p.1616-1625 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33 |
container_end_page | 1625 |
container_issue | 5 |
container_start_page | 1616 |
container_title | Rare metals |
container_volume | 41 |
creator | Yu, Cheng-Xin Li, Yu Wang, Zhao-Hua Wang, Xin-Ran Bai, Ying Wu, Chuan |
description | Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g
−1
, the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g
−1
at 50 mA·g
−1
. This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials.
Graphical abstract |
doi_str_mv | 10.1007/s12598-021-01893-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645878539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645878539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33</originalsourceid><addsrcrecordid>eNp9kMtqGzEUhkVoIKmbF8hKkLUaaTSayzKY3iDQRdK1OJKObJnxyJE0C_st-saV60J2XZ0D_w0-Qu4F_yw47x-zaNQ4MN4IxsUwSna6Irdi6HrWi0F9qD_nVVKNuCEfc95x3rZdx2_J75clebBIcd6EGTGFeUMNZHQ0zjTMNIeyUJzQlhTZIU7HffWcoIQql0hNjLnQssXqDSXARNdxmeLeBEvR-2ADzvZIo6dbSI5aSKYGYY4OqY-J5ujCsmfnNgOlYDp-Itcepox3_-6K_Pr65XX9nT3__PZj_fTMrBRjYZ2Qo2xc64Db0QxcGSMcgGpBDWZE7yQfpQXh0PQSJPfGd9g11vXSKA9SrsjDpfeQ4tuCuehdXNJcJ3XTtWroB1UXVqS5uGyKOSf0-pDCHtJRC67P6PUFva7o9V_0-lRD8hLKhzNPTO_V_0n9AVkWi5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645878539</pqid></control><display><type>article</type><title>Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery</title><source>Springer Nature</source><creator>Yu, Cheng-Xin ; Li, Yu ; Wang, Zhao-Hua ; Wang, Xin-Ran ; Bai, Ying ; Wu, Chuan</creator><creatorcontrib>Yu, Cheng-Xin ; Li, Yu ; Wang, Zhao-Hua ; Wang, Xin-Ran ; Bai, Ying ; Wu, Chuan</creatorcontrib><description>Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g
−1
, the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g
−1
at 50 mA·g
−1
. This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials.
Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-021-01893-z</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Anodes ; Biomaterials ; Carbon ; Chemical bonds ; Chemistry and Materials Science ; Cycles ; Efficiency ; Electrode materials ; Electrolytes ; Energy ; Energy storage ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; Original Article ; Physical Chemistry ; Polymerization ; Sodium-ion batteries ; Solid electrolytes</subject><ispartof>Rare metals, 2022, Vol.41 (5), p.1616-1625</ispartof><rights>Youke Publishing Co.,Ltd 2022</rights><rights>Youke Publishing Co.,Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33</citedby><cites>FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33</cites><orcidid>0000-0003-3645-4357 ; 0000-0003-3878-179X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Cheng-Xin</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Wang, Zhao-Hua</creatorcontrib><creatorcontrib>Wang, Xin-Ran</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><title>Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g
−1
, the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g
−1
at 50 mA·g
−1
. This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials.
Graphical abstract</description><subject>Anodes</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Chemistry and Materials Science</subject><subject>Cycles</subject><subject>Efficiency</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Polymerization</subject><subject>Sodium-ion batteries</subject><subject>Solid electrolytes</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqGzEUhkVoIKmbF8hKkLUaaTSayzKY3iDQRdK1OJKObJnxyJE0C_st-saV60J2XZ0D_w0-Qu4F_yw47x-zaNQ4MN4IxsUwSna6Irdi6HrWi0F9qD_nVVKNuCEfc95x3rZdx2_J75clebBIcd6EGTGFeUMNZHQ0zjTMNIeyUJzQlhTZIU7HffWcoIQql0hNjLnQssXqDSXARNdxmeLeBEvR-2ADzvZIo6dbSI5aSKYGYY4OqY-J5ujCsmfnNgOlYDp-Itcepox3_-6K_Pr65XX9nT3__PZj_fTMrBRjYZ2Qo2xc64Db0QxcGSMcgGpBDWZE7yQfpQXh0PQSJPfGd9g11vXSKA9SrsjDpfeQ4tuCuehdXNJcJ3XTtWroB1UXVqS5uGyKOSf0-pDCHtJRC67P6PUFva7o9V_0-lRD8hLKhzNPTO_V_0n9AVkWi5E</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yu, Cheng-Xin</creator><creator>Li, Yu</creator><creator>Wang, Zhao-Hua</creator><creator>Wang, Xin-Ran</creator><creator>Bai, Ying</creator><creator>Wu, Chuan</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3645-4357</orcidid><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></search><sort><creationdate>2022</creationdate><title>Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery</title><author>Yu, Cheng-Xin ; Li, Yu ; Wang, Zhao-Hua ; Wang, Xin-Ran ; Bai, Ying ; Wu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Chemistry and Materials Science</topic><topic>Cycles</topic><topic>Efficiency</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Polymerization</topic><topic>Sodium-ion batteries</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Cheng-Xin</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Wang, Zhao-Hua</creatorcontrib><creatorcontrib>Wang, Xin-Ran</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Cheng-Xin</au><au>Li, Yu</au><au>Wang, Zhao-Hua</au><au>Wang, Xin-Ran</au><au>Bai, Ying</au><au>Wu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022</date><risdate>2022</risdate><volume>41</volume><issue>5</issue><spage>1616</spage><epage>1625</epage><pages>1616-1625</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g
−1
, the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g
−1
at 50 mA·g
−1
. This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials.
Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-021-01893-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3645-4357</orcidid><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2022, Vol.41 (5), p.1616-1625 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2645878539 |
source | Springer Nature |
subjects | Anodes Biomaterials Carbon Chemical bonds Chemistry and Materials Science Cycles Efficiency Electrode materials Electrolytes Energy Energy storage Materials Engineering Materials Science Metallic Materials Nanoscale Science and Technology Original Article Physical Chemistry Polymerization Sodium-ion batteries Solid electrolytes |
title | Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20engineering%20based%20on%20in%20situ%20electro-polymerization%20to%20boost%20the%20initial%20Coulombic%20efficiency%20of%20hard%20carbon%20anode%20for%20sodium-ion%20battery&rft.jtitle=Rare%20metals&rft.au=Yu,%20Cheng-Xin&rft.date=2022&rft.volume=41&rft.issue=5&rft.spage=1616&rft.epage=1625&rft.pages=1616-1625&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-021-01893-z&rft_dat=%3Cproquest_cross%3E2645878539%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-613932d4da0c9b805bb1daa54a58b9efd3093ca1deb73a30fbf6e62cd73b5fa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645878539&rft_id=info:pmid/&rfr_iscdi=true |