Loading…
U-LanD: Uncertainty-Driven Video Landmark Detection
This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a d...
Saved in:
Published in: | IEEE transactions on medical imaging 2022-04, Vol.41 (4), p.793-804 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243 |
container_end_page | 804 |
container_issue | 4 |
container_start_page | 793 |
container_title | IEEE transactions on medical imaging |
container_volume | 41 |
creator | Jafari, Mohammad H. Luong, Christina Tsang, Michael Gu, Ang Nan Van Woudenberg, Nathan Rohling, Robert Tsang, Teresa Abolmaesumi, Purang |
description | This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs. other frames in videos. We use this observation as an unsupervised signal to automatically recognize key frames on which we detect landmarks. As a test-bed for our framework, we use ultrasound imaging videos of the heart, where sparse and noisy clinical labels are only available for a single frame in each video. Using data from 4,493 patients, we demonstrate that U-LanD can exceedingly outperform the state-of-the-art non-Bayesian counterpart by a noticeable absolute margin of 42% in {R}^{{2}} score, with almost no overhead imposed on the model size. |
doi_str_mv | 10.1109/TMI.2021.3123547 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645984012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9591229</ieee_id><sourcerecordid>2645984012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvgiALXrxsTSbJZuOttH4UKl5a8RbS7BS2trs12RX6701p7cFTYOZ5XzIPIdeM9hmj-mH6Nu4DBdbnDLgU6oR0mZR5ClJ8npIuBZWnlGbQIRchLCllQlJ9TjpcKCozrruEz9KJrUaPyaxy6BtbVs02HfnyB6vkoyywTuK6WFv_lYywQdeUdXVJzhZ2FfDq8PbI7PlpOnxNJ-8v4-FgkrrY36SOWp6jEoItGFgmbI4iExwRVCYRHCvmQucaQCgpUKo4cAVDB9wqp0DwHrnf9258_d1iaMy6DA5XK1th3QYDMlcxGs-K6N0_dFm3voq_M5AJqXNBo6EeoXvK-ToEjwuz8WW8bWsYNTuhJgo1O6HmIDRGbg_F7XyNxTHwZzACN3ugRMTjWkvNADT_BYMjdlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645984012</pqid></control><display><type>article</type><title>U-LanD: Uncertainty-Driven Video Landmark Detection</title><source>IEEE Xplore (Online service)</source><creator>Jafari, Mohammad H. ; Luong, Christina ; Tsang, Michael ; Gu, Ang Nan ; Van Woudenberg, Nathan ; Rohling, Robert ; Tsang, Teresa ; Abolmaesumi, Purang</creator><creatorcontrib>Jafari, Mohammad H. ; Luong, Christina ; Tsang, Michael ; Gu, Ang Nan ; Van Woudenberg, Nathan ; Rohling, Robert ; Tsang, Teresa ; Abolmaesumi, Purang</creatorcontrib><description>This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs. other frames in videos. We use this observation as an unsupervised signal to automatically recognize key frames on which we detect landmarks. As a test-bed for our framework, we use ultrasound imaging videos of the heart, where sparse and noisy clinical labels are only available for a single frame in each video. Using data from 4,493 patients, we demonstrate that U-LanD can exceedingly outperform the state-of-the-art non-Bayesian counterpart by a noticeable absolute margin of 42% in <inline-formula> <tex-math notation="LaTeX">{R}^{{2}} </tex-math></inline-formula> score, with almost no overhead imposed on the model size.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3123547</identifier><identifier>PMID: 34705639</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes methods ; Bayes Theorem ; Bayesian analysis ; Deep learning ; echocardiography ; Frames (data processing) ; Heating systems ; Humans ; Labels ; landmark detection ; Measurement uncertainty ; Predictive models ; sparse training labels ; Task analysis ; Training ; Ultrasonography ; Uncertainty ; uncertainty estimation ; Video ; video analysis ; Video Recording - methods</subject><ispartof>IEEE transactions on medical imaging, 2022-04, Vol.41 (4), p.793-804</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243</citedby><cites>FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243</cites><orcidid>0000-0001-9026-8147 ; 0000-0002-7514-6069 ; 0000-0002-6380-5020 ; 0000-0003-4865-7119 ; 0000-0001-8926-2397 ; 0000-0002-7259-8609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9591229$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34705639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jafari, Mohammad H.</creatorcontrib><creatorcontrib>Luong, Christina</creatorcontrib><creatorcontrib>Tsang, Michael</creatorcontrib><creatorcontrib>Gu, Ang Nan</creatorcontrib><creatorcontrib>Van Woudenberg, Nathan</creatorcontrib><creatorcontrib>Rohling, Robert</creatorcontrib><creatorcontrib>Tsang, Teresa</creatorcontrib><creatorcontrib>Abolmaesumi, Purang</creatorcontrib><title>U-LanD: Uncertainty-Driven Video Landmark Detection</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs. other frames in videos. We use this observation as an unsupervised signal to automatically recognize key frames on which we detect landmarks. As a test-bed for our framework, we use ultrasound imaging videos of the heart, where sparse and noisy clinical labels are only available for a single frame in each video. Using data from 4,493 patients, we demonstrate that U-LanD can exceedingly outperform the state-of-the-art non-Bayesian counterpart by a noticeable absolute margin of 42% in <inline-formula> <tex-math notation="LaTeX">{R}^{{2}} </tex-math></inline-formula> score, with almost no overhead imposed on the model size.</description><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Deep learning</subject><subject>echocardiography</subject><subject>Frames (data processing)</subject><subject>Heating systems</subject><subject>Humans</subject><subject>Labels</subject><subject>landmark detection</subject><subject>Measurement uncertainty</subject><subject>Predictive models</subject><subject>sparse training labels</subject><subject>Task analysis</subject><subject>Training</subject><subject>Ultrasonography</subject><subject>Uncertainty</subject><subject>uncertainty estimation</subject><subject>Video</subject><subject>video analysis</subject><subject>Video Recording - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlbvgiALXrxsTSbJZuOttH4UKl5a8RbS7BS2trs12RX6701p7cFTYOZ5XzIPIdeM9hmj-mH6Nu4DBdbnDLgU6oR0mZR5ClJ8npIuBZWnlGbQIRchLCllQlJ9TjpcKCozrruEz9KJrUaPyaxy6BtbVs02HfnyB6vkoyywTuK6WFv_lYywQdeUdXVJzhZ2FfDq8PbI7PlpOnxNJ-8v4-FgkrrY36SOWp6jEoItGFgmbI4iExwRVCYRHCvmQucaQCgpUKo4cAVDB9wqp0DwHrnf9258_d1iaMy6DA5XK1th3QYDMlcxGs-K6N0_dFm3voq_M5AJqXNBo6EeoXvK-ToEjwuz8WW8bWsYNTuhJgo1O6HmIDRGbg_F7XyNxTHwZzACN3ugRMTjWkvNADT_BYMjdlk</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Jafari, Mohammad H.</creator><creator>Luong, Christina</creator><creator>Tsang, Michael</creator><creator>Gu, Ang Nan</creator><creator>Van Woudenberg, Nathan</creator><creator>Rohling, Robert</creator><creator>Tsang, Teresa</creator><creator>Abolmaesumi, Purang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9026-8147</orcidid><orcidid>https://orcid.org/0000-0002-7514-6069</orcidid><orcidid>https://orcid.org/0000-0002-6380-5020</orcidid><orcidid>https://orcid.org/0000-0003-4865-7119</orcidid><orcidid>https://orcid.org/0000-0001-8926-2397</orcidid><orcidid>https://orcid.org/0000-0002-7259-8609</orcidid></search><sort><creationdate>20220401</creationdate><title>U-LanD: Uncertainty-Driven Video Landmark Detection</title><author>Jafari, Mohammad H. ; Luong, Christina ; Tsang, Michael ; Gu, Ang Nan ; Van Woudenberg, Nathan ; Rohling, Robert ; Tsang, Teresa ; Abolmaesumi, Purang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Deep learning</topic><topic>echocardiography</topic><topic>Frames (data processing)</topic><topic>Heating systems</topic><topic>Humans</topic><topic>Labels</topic><topic>landmark detection</topic><topic>Measurement uncertainty</topic><topic>Predictive models</topic><topic>sparse training labels</topic><topic>Task analysis</topic><topic>Training</topic><topic>Ultrasonography</topic><topic>Uncertainty</topic><topic>uncertainty estimation</topic><topic>Video</topic><topic>video analysis</topic><topic>Video Recording - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Jafari, Mohammad H.</creatorcontrib><creatorcontrib>Luong, Christina</creatorcontrib><creatorcontrib>Tsang, Michael</creatorcontrib><creatorcontrib>Gu, Ang Nan</creatorcontrib><creatorcontrib>Van Woudenberg, Nathan</creatorcontrib><creatorcontrib>Rohling, Robert</creatorcontrib><creatorcontrib>Tsang, Teresa</creatorcontrib><creatorcontrib>Abolmaesumi, Purang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, Mohammad H.</au><au>Luong, Christina</au><au>Tsang, Michael</au><au>Gu, Ang Nan</au><au>Van Woudenberg, Nathan</au><au>Rohling, Robert</au><au>Tsang, Teresa</au><au>Abolmaesumi, Purang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>U-LanD: Uncertainty-Driven Video Landmark Detection</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>793</spage><epage>804</epage><pages>793-804</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs. other frames in videos. We use this observation as an unsupervised signal to automatically recognize key frames on which we detect landmarks. As a test-bed for our framework, we use ultrasound imaging videos of the heart, where sparse and noisy clinical labels are only available for a single frame in each video. Using data from 4,493 patients, we demonstrate that U-LanD can exceedingly outperform the state-of-the-art non-Bayesian counterpart by a noticeable absolute margin of 42% in <inline-formula> <tex-math notation="LaTeX">{R}^{{2}} </tex-math></inline-formula> score, with almost no overhead imposed on the model size.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34705639</pmid><doi>10.1109/TMI.2021.3123547</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9026-8147</orcidid><orcidid>https://orcid.org/0000-0002-7514-6069</orcidid><orcidid>https://orcid.org/0000-0002-6380-5020</orcidid><orcidid>https://orcid.org/0000-0003-4865-7119</orcidid><orcidid>https://orcid.org/0000-0001-8926-2397</orcidid><orcidid>https://orcid.org/0000-0002-7259-8609</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2022-04, Vol.41 (4), p.793-804 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_2645984012 |
source | IEEE Xplore (Online service) |
subjects | Bayes methods Bayes Theorem Bayesian analysis Deep learning echocardiography Frames (data processing) Heating systems Humans Labels landmark detection Measurement uncertainty Predictive models sparse training labels Task analysis Training Ultrasonography Uncertainty uncertainty estimation Video video analysis Video Recording - methods |
title | U-LanD: Uncertainty-Driven Video Landmark Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=U-LanD:%20Uncertainty-Driven%20Video%20Landmark%20Detection&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Jafari,%20Mohammad%20H.&rft.date=2022-04-01&rft.volume=41&rft.issue=4&rft.spage=793&rft.epage=804&rft.pages=793-804&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3123547&rft_dat=%3Cproquest_cross%3E2645984012%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645984012&rft_id=info:pmid/34705639&rft_ieee_id=9591229&rfr_iscdi=true |