Loading…

U-LanD: Uncertainty-Driven Video Landmark Detection

This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2022-04, Vol.41 (4), p.793-804
Main Authors: Jafari, Mohammad H., Luong, Christina, Tsang, Michael, Gu, Ang Nan, Van Woudenberg, Nathan, Rohling, Robert, Tsang, Teresa, Abolmaesumi, Purang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243
cites cdi_FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243
container_end_page 804
container_issue 4
container_start_page 793
container_title IEEE transactions on medical imaging
container_volume 41
creator Jafari, Mohammad H.
Luong, Christina
Tsang, Michael
Gu, Ang Nan
Van Woudenberg, Nathan
Rohling, Robert
Tsang, Teresa
Abolmaesumi, Purang
description This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs. other frames in videos. We use this observation as an unsupervised signal to automatically recognize key frames on which we detect landmarks. As a test-bed for our framework, we use ultrasound imaging videos of the heart, where sparse and noisy clinical labels are only available for a single frame in each video. Using data from 4,493 patients, we demonstrate that U-LanD can exceedingly outperform the state-of-the-art non-Bayesian counterpart by a noticeable absolute margin of 42% in {R}^{{2}} score, with almost no overhead imposed on the model size.
doi_str_mv 10.1109/TMI.2021.3123547
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645984012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9591229</ieee_id><sourcerecordid>2645984012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvgiALXrxsTSbJZuOttH4UKl5a8RbS7BS2trs12RX6701p7cFTYOZ5XzIPIdeM9hmj-mH6Nu4DBdbnDLgU6oR0mZR5ClJ8npIuBZWnlGbQIRchLCllQlJ9TjpcKCozrruEz9KJrUaPyaxy6BtbVs02HfnyB6vkoyywTuK6WFv_lYywQdeUdXVJzhZ2FfDq8PbI7PlpOnxNJ-8v4-FgkrrY36SOWp6jEoItGFgmbI4iExwRVCYRHCvmQucaQCgpUKo4cAVDB9wqp0DwHrnf9258_d1iaMy6DA5XK1th3QYDMlcxGs-K6N0_dFm3voq_M5AJqXNBo6EeoXvK-ToEjwuz8WW8bWsYNTuhJgo1O6HmIDRGbg_F7XyNxTHwZzACN3ugRMTjWkvNADT_BYMjdlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645984012</pqid></control><display><type>article</type><title>U-LanD: Uncertainty-Driven Video Landmark Detection</title><source>IEEE Xplore (Online service)</source><creator>Jafari, Mohammad H. ; Luong, Christina ; Tsang, Michael ; Gu, Ang Nan ; Van Woudenberg, Nathan ; Rohling, Robert ; Tsang, Teresa ; Abolmaesumi, Purang</creator><creatorcontrib>Jafari, Mohammad H. ; Luong, Christina ; Tsang, Michael ; Gu, Ang Nan ; Van Woudenberg, Nathan ; Rohling, Robert ; Tsang, Teresa ; Abolmaesumi, Purang</creatorcontrib><description>This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs. other frames in videos. We use this observation as an unsupervised signal to automatically recognize key frames on which we detect landmarks. As a test-bed for our framework, we use ultrasound imaging videos of the heart, where sparse and noisy clinical labels are only available for a single frame in each video. Using data from 4,493 patients, we demonstrate that U-LanD can exceedingly outperform the state-of-the-art non-Bayesian counterpart by a noticeable absolute margin of 42% in &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{R}^{{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt; score, with almost no overhead imposed on the model size.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3123547</identifier><identifier>PMID: 34705639</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes methods ; Bayes Theorem ; Bayesian analysis ; Deep learning ; echocardiography ; Frames (data processing) ; Heating systems ; Humans ; Labels ; landmark detection ; Measurement uncertainty ; Predictive models ; sparse training labels ; Task analysis ; Training ; Ultrasonography ; Uncertainty ; uncertainty estimation ; Video ; video analysis ; Video Recording - methods</subject><ispartof>IEEE transactions on medical imaging, 2022-04, Vol.41 (4), p.793-804</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243</citedby><cites>FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243</cites><orcidid>0000-0001-9026-8147 ; 0000-0002-7514-6069 ; 0000-0002-6380-5020 ; 0000-0003-4865-7119 ; 0000-0001-8926-2397 ; 0000-0002-7259-8609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9591229$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34705639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jafari, Mohammad H.</creatorcontrib><creatorcontrib>Luong, Christina</creatorcontrib><creatorcontrib>Tsang, Michael</creatorcontrib><creatorcontrib>Gu, Ang Nan</creatorcontrib><creatorcontrib>Van Woudenberg, Nathan</creatorcontrib><creatorcontrib>Rohling, Robert</creatorcontrib><creatorcontrib>Tsang, Teresa</creatorcontrib><creatorcontrib>Abolmaesumi, Purang</creatorcontrib><title>U-LanD: Uncertainty-Driven Video Landmark Detection</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs. other frames in videos. We use this observation as an unsupervised signal to automatically recognize key frames on which we detect landmarks. As a test-bed for our framework, we use ultrasound imaging videos of the heart, where sparse and noisy clinical labels are only available for a single frame in each video. Using data from 4,493 patients, we demonstrate that U-LanD can exceedingly outperform the state-of-the-art non-Bayesian counterpart by a noticeable absolute margin of 42% in &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{R}^{{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt; score, with almost no overhead imposed on the model size.</description><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Deep learning</subject><subject>echocardiography</subject><subject>Frames (data processing)</subject><subject>Heating systems</subject><subject>Humans</subject><subject>Labels</subject><subject>landmark detection</subject><subject>Measurement uncertainty</subject><subject>Predictive models</subject><subject>sparse training labels</subject><subject>Task analysis</subject><subject>Training</subject><subject>Ultrasonography</subject><subject>Uncertainty</subject><subject>uncertainty estimation</subject><subject>Video</subject><subject>video analysis</subject><subject>Video Recording - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlbvgiALXrxsTSbJZuOttH4UKl5a8RbS7BS2trs12RX6701p7cFTYOZ5XzIPIdeM9hmj-mH6Nu4DBdbnDLgU6oR0mZR5ClJ8npIuBZWnlGbQIRchLCllQlJ9TjpcKCozrruEz9KJrUaPyaxy6BtbVs02HfnyB6vkoyywTuK6WFv_lYywQdeUdXVJzhZ2FfDq8PbI7PlpOnxNJ-8v4-FgkrrY36SOWp6jEoItGFgmbI4iExwRVCYRHCvmQucaQCgpUKo4cAVDB9wqp0DwHrnf9258_d1iaMy6DA5XK1th3QYDMlcxGs-K6N0_dFm3voq_M5AJqXNBo6EeoXvK-ToEjwuz8WW8bWsYNTuhJgo1O6HmIDRGbg_F7XyNxTHwZzACN3ugRMTjWkvNADT_BYMjdlk</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Jafari, Mohammad H.</creator><creator>Luong, Christina</creator><creator>Tsang, Michael</creator><creator>Gu, Ang Nan</creator><creator>Van Woudenberg, Nathan</creator><creator>Rohling, Robert</creator><creator>Tsang, Teresa</creator><creator>Abolmaesumi, Purang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9026-8147</orcidid><orcidid>https://orcid.org/0000-0002-7514-6069</orcidid><orcidid>https://orcid.org/0000-0002-6380-5020</orcidid><orcidid>https://orcid.org/0000-0003-4865-7119</orcidid><orcidid>https://orcid.org/0000-0001-8926-2397</orcidid><orcidid>https://orcid.org/0000-0002-7259-8609</orcidid></search><sort><creationdate>20220401</creationdate><title>U-LanD: Uncertainty-Driven Video Landmark Detection</title><author>Jafari, Mohammad H. ; Luong, Christina ; Tsang, Michael ; Gu, Ang Nan ; Van Woudenberg, Nathan ; Rohling, Robert ; Tsang, Teresa ; Abolmaesumi, Purang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Deep learning</topic><topic>echocardiography</topic><topic>Frames (data processing)</topic><topic>Heating systems</topic><topic>Humans</topic><topic>Labels</topic><topic>landmark detection</topic><topic>Measurement uncertainty</topic><topic>Predictive models</topic><topic>sparse training labels</topic><topic>Task analysis</topic><topic>Training</topic><topic>Ultrasonography</topic><topic>Uncertainty</topic><topic>uncertainty estimation</topic><topic>Video</topic><topic>video analysis</topic><topic>Video Recording - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Jafari, Mohammad H.</creatorcontrib><creatorcontrib>Luong, Christina</creatorcontrib><creatorcontrib>Tsang, Michael</creatorcontrib><creatorcontrib>Gu, Ang Nan</creatorcontrib><creatorcontrib>Van Woudenberg, Nathan</creatorcontrib><creatorcontrib>Rohling, Robert</creatorcontrib><creatorcontrib>Tsang, Teresa</creatorcontrib><creatorcontrib>Abolmaesumi, Purang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, Mohammad H.</au><au>Luong, Christina</au><au>Tsang, Michael</au><au>Gu, Ang Nan</au><au>Van Woudenberg, Nathan</au><au>Rohling, Robert</au><au>Tsang, Teresa</au><au>Abolmaesumi, Purang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>U-LanD: Uncertainty-Driven Video Landmark Detection</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>793</spage><epage>804</epage><pages>793-804</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs. other frames in videos. We use this observation as an unsupervised signal to automatically recognize key frames on which we detect landmarks. As a test-bed for our framework, we use ultrasound imaging videos of the heart, where sparse and noisy clinical labels are only available for a single frame in each video. Using data from 4,493 patients, we demonstrate that U-LanD can exceedingly outperform the state-of-the-art non-Bayesian counterpart by a noticeable absolute margin of 42% in &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{R}^{{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt; score, with almost no overhead imposed on the model size.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34705639</pmid><doi>10.1109/TMI.2021.3123547</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9026-8147</orcidid><orcidid>https://orcid.org/0000-0002-7514-6069</orcidid><orcidid>https://orcid.org/0000-0002-6380-5020</orcidid><orcidid>https://orcid.org/0000-0003-4865-7119</orcidid><orcidid>https://orcid.org/0000-0001-8926-2397</orcidid><orcidid>https://orcid.org/0000-0002-7259-8609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2022-04, Vol.41 (4), p.793-804
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2645984012
source IEEE Xplore (Online service)
subjects Bayes methods
Bayes Theorem
Bayesian analysis
Deep learning
echocardiography
Frames (data processing)
Heating systems
Humans
Labels
landmark detection
Measurement uncertainty
Predictive models
sparse training labels
Task analysis
Training
Ultrasonography
Uncertainty
uncertainty estimation
Video
video analysis
Video Recording - methods
title U-LanD: Uncertainty-Driven Video Landmark Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=U-LanD:%20Uncertainty-Driven%20Video%20Landmark%20Detection&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Jafari,%20Mohammad%20H.&rft.date=2022-04-01&rft.volume=41&rft.issue=4&rft.spage=793&rft.epage=804&rft.pages=793-804&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3123547&rft_dat=%3Cproquest_cross%3E2645984012%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c0a38e7441f12a14a8e4643ee2765e2c1db4989224754e57c1dcd1ec23a7c7243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645984012&rft_id=info:pmid/34705639&rft_ieee_id=9591229&rfr_iscdi=true