Loading…
Multistage Spatio-Temporal Networks for Robust Sketch Recognition
Sketch recognition relies on two types of information, namely, spatial contexts like the local structures in images and temporal contexts like the orders of strokes. Existing methods usually adopt convolutional neural networks (CNNs) to model spatial contexts, and recurrent neural networks (RNNs) fo...
Saved in:
Published in: | IEEE transactions on image processing 2022, Vol.31, p.2683-2694 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-351dc29fe302927ad502f70addf6de58dbd68e24789aa669987ca3064c4b33113 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-351dc29fe302927ad502f70addf6de58dbd68e24789aa669987ca3064c4b33113 |
container_end_page | 2694 |
container_issue | |
container_start_page | 2683 |
container_title | IEEE transactions on image processing |
container_volume | 31 |
creator | Li, Hanhui Jiang, Xudong Guan, Boliang Wang, Ruomei Thalmann, Nadia Magnenat |
description | Sketch recognition relies on two types of information, namely, spatial contexts like the local structures in images and temporal contexts like the orders of strokes. Existing methods usually adopt convolutional neural networks (CNNs) to model spatial contexts, and recurrent neural networks (RNNs) for temporal contexts. However, most of them combine spatial and temporal features with late fusion or single-stage transformation, which is prone to losing the informative details in sketches. To tackle this problem, we propose a novel framework that aims at the multi-stage interactions and refinements of spatial and temporal features. Specifically, given a sketch represented by a stroke array, we first generate a temporal-enriched image (TEI), which is a pseudo-color image retaining the temporal order of strokes, to overcome the difficulty of CNNs in leveraging temporal information. We then construct a dual-branch network, in which a CNN branch and a RNN branch are adopted to process the stroke array and the TEI respectively. In the early stages of our network, considering the limited ability of RNNs in capturing spatial structures, we utilize multiple enhancement modules to enhance the stroke features with the TEI features. While in the last stage of our network, we propose a spatio-temporal enhancement module that refines stroke features and TEI features in a joint feature space. Furthermore, a bidirectional temporal-compatible unit that adaptively merges features in opposite temporal orders, is proposed to help RNNs tackle abrupt strokes. Comprehensive experimental results on QuickDraw and TU-Berlin demonstrate that the proposed method is a robust and efficient solution for sketch recognition. |
doi_str_mv | 10.1109/TIP.2022.3160240 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2645985432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9740528</ieee_id><sourcerecordid>2645985432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-351dc29fe302927ad502f70addf6de58dbd68e24789aa669987ca3064c4b33113</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3eBUECXrykzn5ls0cpfhTqB209h00yqWmTbt1NEP-9Ka09eJqBed6X4SHkksKQUtB38_H7kAFjQ04jYAKOSJ9qQUMAwY67HaQKFRW6R868XwJQIWl0SnpccgYUWJ_cv7RVU_rGLDCYbUxT2nCO9cY6UwWv2Hxbt_JBYV0wtWnrm2C2wib7DKaY2cW67PD1OTkpTOXxYj8H5OPxYT56DidvT-PR_STMuFBNyCXNM6YL5MA0UyaXwAoFJs-LKEcZ52kexciEirUxUaR1rDLDIRKZSDmnlA_I7a534-xXi75J6tJnWFVmjbb1CYsEizVVsejQm3_o0rZu3X23paSOpeCso2BHZc5677BINq6sjftJKCRbvUmnN9nqTfZ6u8j1vrhNa8wPgT-fHXC1A0pEPJy1EiBZzH8B5o58mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645985432</pqid></control><display><type>article</type><title>Multistage Spatio-Temporal Networks for Robust Sketch Recognition</title><source>IEEE Xplore (Online service)</source><creator>Li, Hanhui ; Jiang, Xudong ; Guan, Boliang ; Wang, Ruomei ; Thalmann, Nadia Magnenat</creator><creatorcontrib>Li, Hanhui ; Jiang, Xudong ; Guan, Boliang ; Wang, Ruomei ; Thalmann, Nadia Magnenat</creatorcontrib><description>Sketch recognition relies on two types of information, namely, spatial contexts like the local structures in images and temporal contexts like the orders of strokes. Existing methods usually adopt convolutional neural networks (CNNs) to model spatial contexts, and recurrent neural networks (RNNs) for temporal contexts. However, most of them combine spatial and temporal features with late fusion or single-stage transformation, which is prone to losing the informative details in sketches. To tackle this problem, we propose a novel framework that aims at the multi-stage interactions and refinements of spatial and temporal features. Specifically, given a sketch represented by a stroke array, we first generate a temporal-enriched image (TEI), which is a pseudo-color image retaining the temporal order of strokes, to overcome the difficulty of CNNs in leveraging temporal information. We then construct a dual-branch network, in which a CNN branch and a RNN branch are adopted to process the stroke array and the TEI respectively. In the early stages of our network, considering the limited ability of RNNs in capturing spatial structures, we utilize multiple enhancement modules to enhance the stroke features with the TEI features. While in the last stage of our network, we propose a spatio-temporal enhancement module that refines stroke features and TEI features in a joint feature space. Furthermore, a bidirectional temporal-compatible unit that adaptively merges features in opposite temporal orders, is proposed to help RNNs tackle abrupt strokes. Comprehensive experimental results on QuickDraw and TU-Berlin demonstrate that the proposed method is a robust and efficient solution for sketch recognition.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3160240</identifier><identifier>PMID: 35320102</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Arrays ; Artificial neural networks ; Color imagery ; Convolutional neural networks ; Feature extraction ; feature fusion ; Image recognition ; Image segmentation ; Modules ; multi-modal networks ; Network architecture ; Neural networks ; Recognition ; Recurrent neural networks ; Robustness (mathematics) ; Sketch recognition ; Sketches ; spatio-temporal feature ; Stroke (medical condition)</subject><ispartof>IEEE transactions on image processing, 2022, Vol.31, p.2683-2694</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-351dc29fe302927ad502f70addf6de58dbd68e24789aa669987ca3064c4b33113</citedby><cites>FETCH-LOGICAL-c347t-351dc29fe302927ad502f70addf6de58dbd68e24789aa669987ca3064c4b33113</cites><orcidid>0000-0002-9838-6532 ; 0000-0002-3897-4041 ; 0000-0001-5221-8018 ; 0000-0002-9104-2315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9740528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35320102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hanhui</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Guan, Boliang</creatorcontrib><creatorcontrib>Wang, Ruomei</creatorcontrib><creatorcontrib>Thalmann, Nadia Magnenat</creatorcontrib><title>Multistage Spatio-Temporal Networks for Robust Sketch Recognition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Sketch recognition relies on two types of information, namely, spatial contexts like the local structures in images and temporal contexts like the orders of strokes. Existing methods usually adopt convolutional neural networks (CNNs) to model spatial contexts, and recurrent neural networks (RNNs) for temporal contexts. However, most of them combine spatial and temporal features with late fusion or single-stage transformation, which is prone to losing the informative details in sketches. To tackle this problem, we propose a novel framework that aims at the multi-stage interactions and refinements of spatial and temporal features. Specifically, given a sketch represented by a stroke array, we first generate a temporal-enriched image (TEI), which is a pseudo-color image retaining the temporal order of strokes, to overcome the difficulty of CNNs in leveraging temporal information. We then construct a dual-branch network, in which a CNN branch and a RNN branch are adopted to process the stroke array and the TEI respectively. In the early stages of our network, considering the limited ability of RNNs in capturing spatial structures, we utilize multiple enhancement modules to enhance the stroke features with the TEI features. While in the last stage of our network, we propose a spatio-temporal enhancement module that refines stroke features and TEI features in a joint feature space. Furthermore, a bidirectional temporal-compatible unit that adaptively merges features in opposite temporal orders, is proposed to help RNNs tackle abrupt strokes. Comprehensive experimental results on QuickDraw and TU-Berlin demonstrate that the proposed method is a robust and efficient solution for sketch recognition.</description><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Color imagery</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Modules</subject><subject>multi-modal networks</subject><subject>Network architecture</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Recurrent neural networks</subject><subject>Robustness (mathematics)</subject><subject>Sketch recognition</subject><subject>Sketches</subject><subject>spatio-temporal feature</subject><subject>Stroke (medical condition)</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3eBUECXrykzn5ls0cpfhTqB209h00yqWmTbt1NEP-9Ka09eJqBed6X4SHkksKQUtB38_H7kAFjQ04jYAKOSJ9qQUMAwY67HaQKFRW6R868XwJQIWl0SnpccgYUWJ_cv7RVU_rGLDCYbUxT2nCO9cY6UwWv2Hxbt_JBYV0wtWnrm2C2wib7DKaY2cW67PD1OTkpTOXxYj8H5OPxYT56DidvT-PR_STMuFBNyCXNM6YL5MA0UyaXwAoFJs-LKEcZ52kexciEirUxUaR1rDLDIRKZSDmnlA_I7a534-xXi75J6tJnWFVmjbb1CYsEizVVsejQm3_o0rZu3X23paSOpeCso2BHZc5677BINq6sjftJKCRbvUmnN9nqTfZ6u8j1vrhNa8wPgT-fHXC1A0pEPJy1EiBZzH8B5o58mg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Li, Hanhui</creator><creator>Jiang, Xudong</creator><creator>Guan, Boliang</creator><creator>Wang, Ruomei</creator><creator>Thalmann, Nadia Magnenat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9838-6532</orcidid><orcidid>https://orcid.org/0000-0002-3897-4041</orcidid><orcidid>https://orcid.org/0000-0001-5221-8018</orcidid><orcidid>https://orcid.org/0000-0002-9104-2315</orcidid></search><sort><creationdate>2022</creationdate><title>Multistage Spatio-Temporal Networks for Robust Sketch Recognition</title><author>Li, Hanhui ; Jiang, Xudong ; Guan, Boliang ; Wang, Ruomei ; Thalmann, Nadia Magnenat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-351dc29fe302927ad502f70addf6de58dbd68e24789aa669987ca3064c4b33113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Color imagery</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Modules</topic><topic>multi-modal networks</topic><topic>Network architecture</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Recurrent neural networks</topic><topic>Robustness (mathematics)</topic><topic>Sketch recognition</topic><topic>Sketches</topic><topic>spatio-temporal feature</topic><topic>Stroke (medical condition)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hanhui</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Guan, Boliang</creatorcontrib><creatorcontrib>Wang, Ruomei</creatorcontrib><creatorcontrib>Thalmann, Nadia Magnenat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hanhui</au><au>Jiang, Xudong</au><au>Guan, Boliang</au><au>Wang, Ruomei</au><au>Thalmann, Nadia Magnenat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistage Spatio-Temporal Networks for Robust Sketch Recognition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2022</date><risdate>2022</risdate><volume>31</volume><spage>2683</spage><epage>2694</epage><pages>2683-2694</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Sketch recognition relies on two types of information, namely, spatial contexts like the local structures in images and temporal contexts like the orders of strokes. Existing methods usually adopt convolutional neural networks (CNNs) to model spatial contexts, and recurrent neural networks (RNNs) for temporal contexts. However, most of them combine spatial and temporal features with late fusion or single-stage transformation, which is prone to losing the informative details in sketches. To tackle this problem, we propose a novel framework that aims at the multi-stage interactions and refinements of spatial and temporal features. Specifically, given a sketch represented by a stroke array, we first generate a temporal-enriched image (TEI), which is a pseudo-color image retaining the temporal order of strokes, to overcome the difficulty of CNNs in leveraging temporal information. We then construct a dual-branch network, in which a CNN branch and a RNN branch are adopted to process the stroke array and the TEI respectively. In the early stages of our network, considering the limited ability of RNNs in capturing spatial structures, we utilize multiple enhancement modules to enhance the stroke features with the TEI features. While in the last stage of our network, we propose a spatio-temporal enhancement module that refines stroke features and TEI features in a joint feature space. Furthermore, a bidirectional temporal-compatible unit that adaptively merges features in opposite temporal orders, is proposed to help RNNs tackle abrupt strokes. Comprehensive experimental results on QuickDraw and TU-Berlin demonstrate that the proposed method is a robust and efficient solution for sketch recognition.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35320102</pmid><doi>10.1109/TIP.2022.3160240</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9838-6532</orcidid><orcidid>https://orcid.org/0000-0002-3897-4041</orcidid><orcidid>https://orcid.org/0000-0001-5221-8018</orcidid><orcidid>https://orcid.org/0000-0002-9104-2315</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2022, Vol.31, p.2683-2694 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2645985432 |
source | IEEE Xplore (Online service) |
subjects | Arrays Artificial neural networks Color imagery Convolutional neural networks Feature extraction feature fusion Image recognition Image segmentation Modules multi-modal networks Network architecture Neural networks Recognition Recurrent neural networks Robustness (mathematics) Sketch recognition Sketches spatio-temporal feature Stroke (medical condition) |
title | Multistage Spatio-Temporal Networks for Robust Sketch Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistage%20Spatio-Temporal%20Networks%20for%20Robust%20Sketch%20Recognition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Hanhui&rft.date=2022&rft.volume=31&rft.spage=2683&rft.epage=2694&rft.pages=2683-2694&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3160240&rft_dat=%3Cproquest_pubme%3E2645985432%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-351dc29fe302927ad502f70addf6de58dbd68e24789aa669987ca3064c4b33113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645985432&rft_id=info:pmid/35320102&rft_ieee_id=9740528&rfr_iscdi=true |