Loading…

Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor

The integration of a rotating detonation combustor with downstream nozzle guide vanes is a crucial early step prior to the full implementation of the rotating detonation turbine engine. The present study aims to elucidate the flow structures introduced by this integration and provide guidance for th...

Full description

Saved in:
Bibliographic Details
Published in:Acta astronautica 2022-04, Vol.193, p.90-99
Main Authors: Shen, Dawen, Cheng, Miao, Wu, Kevin, Sheng, Zhaohua, Wang, Jianping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-9b5055da79389650759b9ea770fadc08615a57f18b30c7a8c616daabb001891f3
cites cdi_FETCH-LOGICAL-c343t-9b5055da79389650759b9ea770fadc08615a57f18b30c7a8c616daabb001891f3
container_end_page 99
container_issue
container_start_page 90
container_title Acta astronautica
container_volume 193
creator Shen, Dawen
Cheng, Miao
Wu, Kevin
Sheng, Zhaohua
Wang, Jianping
description The integration of a rotating detonation combustor with downstream nozzle guide vanes is a crucial early step prior to the full implementation of the rotating detonation turbine engine. The present study aims to elucidate the flow structures introduced by this integration and provide guidance for the application of rotating detonation turbine engines. A numerical investigation on a rotating detonation combustor with three supersonic guide vane configurations is conducted and compared to a baseline case without any nozzle guide vane. Integrating nozzle guide vanes into the rotating detonation combustor increases the detonation strength and its pressure gain capability, resulting in a higher outlet total pressure for the greater thrust potential. The results show that the total pressure drops mainly in the attached oblique shock region rather than the nozzle guide vane passages. Moreover, the detonation intensity and the shock structures in nozzle guide vane passages influence the total pressure gain performance for multiple configurations. Compared to others, the aligned configuration is preferred for future design due to the optimal comprehensive performance of unsteadiness damping, flow conditioning, total pressure gain, and useful work production. Furthermore, a shock structure termed rake-type shock envelope is identified for the first time. The propagating detonation forces the reflected shock waves from the leading edges of the vanes to move circumferentially, yielding this dynamic shock system. This suggests that the propagating detonation guarantees no normal shocks upstream of the nozzle guide vanes, and therefore the typical unstarting issue for turbines is prevented. •Simulations on a rotating detonation combustor configured with supersonic nozzle guide vanes are performed.•Performance assessments among multiple configurations are conducted.•A dynamic shock structure termed rake-type shock envelope is identified for the first time.•Numerical results provide guidance for the rotating detonation turbine engine.
doi_str_mv 10.1016/j.actaastro.2022.01.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646755674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576522000029</els_id><sourcerecordid>2646755674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-9b5055da79389650759b9ea770fadc08615a57f18b30c7a8c616daabb001891f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wYDnXSe7TbI5itQPELzoOcxmE93SJjXJVvTXG6149TRzeN53mIeQcwY1AyYuVzWajJhyDHUDTVMDqwGaAzJjnVRVAy0ckhmAWlRcCn5MTlJaAYBsOjUjcemcNTnR4Giatjam4EdDffj8XFv6Mo2DpTv0tgCe5ldLC-JC3KA3lqIfqFuHd1qOTyZP0f70II0hYx79Cx1sDr6sJWzCpp9SDvGUHDlcJ3v2O-fk-Wb5dH1XPTze3l9fPVSmXbS5Uj0HzgeUqu2U4CC56pVFKcHhYKATjCOXjnV9C0ZiZwQTA2LfA7BOMdfOycW-dxvD22RT1qswRV9O6kYshORcyEWh5J4yMaQUrdPbOG4wfmgG-luwXuk_wfpbsAami-CSvNonbXliN9qokxlt8TKMsSjVQxj_7fgC9f2Kkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646755674</pqid></control><display><type>article</type><title>Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor</title><source>Elsevier ScienceDirect Freedom Collection 2023</source><creator>Shen, Dawen ; Cheng, Miao ; Wu, Kevin ; Sheng, Zhaohua ; Wang, Jianping</creator><creatorcontrib>Shen, Dawen ; Cheng, Miao ; Wu, Kevin ; Sheng, Zhaohua ; Wang, Jianping</creatorcontrib><description>The integration of a rotating detonation combustor with downstream nozzle guide vanes is a crucial early step prior to the full implementation of the rotating detonation turbine engine. The present study aims to elucidate the flow structures introduced by this integration and provide guidance for the application of rotating detonation turbine engines. A numerical investigation on a rotating detonation combustor with three supersonic guide vane configurations is conducted and compared to a baseline case without any nozzle guide vane. Integrating nozzle guide vanes into the rotating detonation combustor increases the detonation strength and its pressure gain capability, resulting in a higher outlet total pressure for the greater thrust potential. The results show that the total pressure drops mainly in the attached oblique shock region rather than the nozzle guide vane passages. Moreover, the detonation intensity and the shock structures in nozzle guide vane passages influence the total pressure gain performance for multiple configurations. Compared to others, the aligned configuration is preferred for future design due to the optimal comprehensive performance of unsteadiness damping, flow conditioning, total pressure gain, and useful work production. Furthermore, a shock structure termed rake-type shock envelope is identified for the first time. The propagating detonation forces the reflected shock waves from the leading edges of the vanes to move circumferentially, yielding this dynamic shock system. This suggests that the propagating detonation guarantees no normal shocks upstream of the nozzle guide vanes, and therefore the typical unstarting issue for turbines is prevented. •Simulations on a rotating detonation combustor configured with supersonic nozzle guide vanes are performed.•Performance assessments among multiple configurations are conducted.•A dynamic shock structure termed rake-type shock envelope is identified for the first time.•Numerical results provide guidance for the rotating detonation turbine engine.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2022.01.002</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Combustion chambers ; Configuration management ; Damping ; Detonation ; Flow structures ; Guide vanes ; Leading edges ; Pressure drop ; Pressure gain combustion ; Rotating detonation combustor ; Rotation ; Shock wave propagation ; Shock wave reflection ; Shock waves ; Supersonic nozzle guide vane ; Supersonic nozzles ; Turbine engines ; Turbines</subject><ispartof>Acta astronautica, 2022-04, Vol.193, p.90-99</ispartof><rights>2022 IAA</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-9b5055da79389650759b9ea770fadc08615a57f18b30c7a8c616daabb001891f3</citedby><cites>FETCH-LOGICAL-c343t-9b5055da79389650759b9ea770fadc08615a57f18b30c7a8c616daabb001891f3</cites><orcidid>0000-0002-2042-0833 ; 0000-0001-9374-6431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Shen, Dawen</creatorcontrib><creatorcontrib>Cheng, Miao</creatorcontrib><creatorcontrib>Wu, Kevin</creatorcontrib><creatorcontrib>Sheng, Zhaohua</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><title>Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor</title><title>Acta astronautica</title><description>The integration of a rotating detonation combustor with downstream nozzle guide vanes is a crucial early step prior to the full implementation of the rotating detonation turbine engine. The present study aims to elucidate the flow structures introduced by this integration and provide guidance for the application of rotating detonation turbine engines. A numerical investigation on a rotating detonation combustor with three supersonic guide vane configurations is conducted and compared to a baseline case without any nozzle guide vane. Integrating nozzle guide vanes into the rotating detonation combustor increases the detonation strength and its pressure gain capability, resulting in a higher outlet total pressure for the greater thrust potential. The results show that the total pressure drops mainly in the attached oblique shock region rather than the nozzle guide vane passages. Moreover, the detonation intensity and the shock structures in nozzle guide vane passages influence the total pressure gain performance for multiple configurations. Compared to others, the aligned configuration is preferred for future design due to the optimal comprehensive performance of unsteadiness damping, flow conditioning, total pressure gain, and useful work production. Furthermore, a shock structure termed rake-type shock envelope is identified for the first time. The propagating detonation forces the reflected shock waves from the leading edges of the vanes to move circumferentially, yielding this dynamic shock system. This suggests that the propagating detonation guarantees no normal shocks upstream of the nozzle guide vanes, and therefore the typical unstarting issue for turbines is prevented. •Simulations on a rotating detonation combustor configured with supersonic nozzle guide vanes are performed.•Performance assessments among multiple configurations are conducted.•A dynamic shock structure termed rake-type shock envelope is identified for the first time.•Numerical results provide guidance for the rotating detonation turbine engine.</description><subject>Combustion chambers</subject><subject>Configuration management</subject><subject>Damping</subject><subject>Detonation</subject><subject>Flow structures</subject><subject>Guide vanes</subject><subject>Leading edges</subject><subject>Pressure drop</subject><subject>Pressure gain combustion</subject><subject>Rotating detonation combustor</subject><subject>Rotation</subject><subject>Shock wave propagation</subject><subject>Shock wave reflection</subject><subject>Shock waves</subject><subject>Supersonic nozzle guide vane</subject><subject>Supersonic nozzles</subject><subject>Turbine engines</subject><subject>Turbines</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wYDnXSe7TbI5itQPELzoOcxmE93SJjXJVvTXG6149TRzeN53mIeQcwY1AyYuVzWajJhyDHUDTVMDqwGaAzJjnVRVAy0ckhmAWlRcCn5MTlJaAYBsOjUjcemcNTnR4Giatjam4EdDffj8XFv6Mo2DpTv0tgCe5ldLC-JC3KA3lqIfqFuHd1qOTyZP0f70II0hYx79Cx1sDr6sJWzCpp9SDvGUHDlcJ3v2O-fk-Wb5dH1XPTze3l9fPVSmXbS5Uj0HzgeUqu2U4CC56pVFKcHhYKATjCOXjnV9C0ZiZwQTA2LfA7BOMdfOycW-dxvD22RT1qswRV9O6kYshORcyEWh5J4yMaQUrdPbOG4wfmgG-luwXuk_wfpbsAami-CSvNonbXliN9qokxlt8TKMsSjVQxj_7fgC9f2Kkg</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Shen, Dawen</creator><creator>Cheng, Miao</creator><creator>Wu, Kevin</creator><creator>Sheng, Zhaohua</creator><creator>Wang, Jianping</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2042-0833</orcidid><orcidid>https://orcid.org/0000-0001-9374-6431</orcidid></search><sort><creationdate>202204</creationdate><title>Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor</title><author>Shen, Dawen ; Cheng, Miao ; Wu, Kevin ; Sheng, Zhaohua ; Wang, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-9b5055da79389650759b9ea770fadc08615a57f18b30c7a8c616daabb001891f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combustion chambers</topic><topic>Configuration management</topic><topic>Damping</topic><topic>Detonation</topic><topic>Flow structures</topic><topic>Guide vanes</topic><topic>Leading edges</topic><topic>Pressure drop</topic><topic>Pressure gain combustion</topic><topic>Rotating detonation combustor</topic><topic>Rotation</topic><topic>Shock wave propagation</topic><topic>Shock wave reflection</topic><topic>Shock waves</topic><topic>Supersonic nozzle guide vane</topic><topic>Supersonic nozzles</topic><topic>Turbine engines</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Dawen</creatorcontrib><creatorcontrib>Cheng, Miao</creatorcontrib><creatorcontrib>Wu, Kevin</creatorcontrib><creatorcontrib>Sheng, Zhaohua</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Dawen</au><au>Cheng, Miao</au><au>Wu, Kevin</au><au>Sheng, Zhaohua</au><au>Wang, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor</atitle><jtitle>Acta astronautica</jtitle><date>2022-04</date><risdate>2022</risdate><volume>193</volume><spage>90</spage><epage>99</epage><pages>90-99</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>The integration of a rotating detonation combustor with downstream nozzle guide vanes is a crucial early step prior to the full implementation of the rotating detonation turbine engine. The present study aims to elucidate the flow structures introduced by this integration and provide guidance for the application of rotating detonation turbine engines. A numerical investigation on a rotating detonation combustor with three supersonic guide vane configurations is conducted and compared to a baseline case without any nozzle guide vane. Integrating nozzle guide vanes into the rotating detonation combustor increases the detonation strength and its pressure gain capability, resulting in a higher outlet total pressure for the greater thrust potential. The results show that the total pressure drops mainly in the attached oblique shock region rather than the nozzle guide vane passages. Moreover, the detonation intensity and the shock structures in nozzle guide vane passages influence the total pressure gain performance for multiple configurations. Compared to others, the aligned configuration is preferred for future design due to the optimal comprehensive performance of unsteadiness damping, flow conditioning, total pressure gain, and useful work production. Furthermore, a shock structure termed rake-type shock envelope is identified for the first time. The propagating detonation forces the reflected shock waves from the leading edges of the vanes to move circumferentially, yielding this dynamic shock system. This suggests that the propagating detonation guarantees no normal shocks upstream of the nozzle guide vanes, and therefore the typical unstarting issue for turbines is prevented. •Simulations on a rotating detonation combustor configured with supersonic nozzle guide vanes are performed.•Performance assessments among multiple configurations are conducted.•A dynamic shock structure termed rake-type shock envelope is identified for the first time.•Numerical results provide guidance for the rotating detonation turbine engine.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2022.01.002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2042-0833</orcidid><orcidid>https://orcid.org/0000-0001-9374-6431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2022-04, Vol.193, p.90-99
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2646755674
source Elsevier ScienceDirect Freedom Collection 2023
subjects Combustion chambers
Configuration management
Damping
Detonation
Flow structures
Guide vanes
Leading edges
Pressure drop
Pressure gain combustion
Rotating detonation combustor
Rotation
Shock wave propagation
Shock wave reflection
Shock waves
Supersonic nozzle guide vane
Supersonic nozzles
Turbine engines
Turbines
title Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T18%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20supersonic%20nozzle%20guide%20vanes%20on%20the%20performance%20and%20flow%20structures%20of%20a%20rotating%20detonation%20combustor&rft.jtitle=Acta%20astronautica&rft.au=Shen,%20Dawen&rft.date=2022-04&rft.volume=193&rft.spage=90&rft.epage=99&rft.pages=90-99&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2022.01.002&rft_dat=%3Cproquest_cross%3E2646755674%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-9b5055da79389650759b9ea770fadc08615a57f18b30c7a8c616daabb001891f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646755674&rft_id=info:pmid/&rfr_iscdi=true