Loading…
Filter bubble effect in the multistate voter model
Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by consi...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2022-04, Vol.32 (4), p.043103-043103 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3 |
container_end_page | 043103 |
container_issue | 4 |
container_start_page | 043103 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 32 |
creator | Iannelli, Giulio De Marzo, Giordano Castellano, Claudio |
description | Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability
λ, a user interacts with “personalized information,” suggesting the opinion most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the existence of a nontrivial transition between a region (for small
λ) where a consensus is reached and a region (above a threshold
λ
c) where the system gets polarized and clusters of users with different opinions persist indefinitely. The threshold always vanishes for large system size
N, showing that a consensus becomes impossible for a large number of users. This finding opens new questions about the side effects of the widespread use of personalized recommendation algorithms. |
doi_str_mv | 10.1063/5.0079135 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2646814249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658227395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFFurB_-ABLyokDr7mc1RilWh4EXPIbuZxZQkW7NJwX9vQquCgqeZw8M7w0vIOYU5BcVv5RwgSSmXB2RKQadxojQ7HHcpYioBJuQkhDUAUMblMZlwKXSqBZsStiyrDtvI9MZUGKFzaLuobKLuDaO6r7oydHmH0daPqvYFVqfkyOVVwLP9nJHX5f3L4jFePT88Le5WseWad7EGA9RIzq0CZwuacysSAWgERWUK5I5qliuaMJFyTVkugdMElQMqHZOOz8jVLnfT-vceQ5fVZbBYVXmDvg8ZU1IzlvBUDvTyF137vm2G7wYllKZiPDIj1ztlWx9Ciy7btGWdtx8ZhWwsMpPZvsjBXuwTe1Nj8S2_mhvAzQ4EWw4Nlb75Nlvf_iRlm8L9h_-e_gTsJoY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646814249</pqid></control><display><type>article</type><title>Filter bubble effect in the multistate voter model</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Iannelli, Giulio ; De Marzo, Giordano ; Castellano, Claudio</creator><creatorcontrib>Iannelli, Giulio ; De Marzo, Giordano ; Castellano, Claudio</creatorcontrib><description>Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability
λ, a user interacts with “personalized information,” suggesting the opinion most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the existence of a nontrivial transition between a region (for small
λ) where a consensus is reached and a region (above a threshold
λ
c) where the system gets polarized and clusters of users with different opinions persist indefinitely. The threshold always vanishes for large system size
N, showing that a consensus becomes impossible for a large number of users. This finding opens new questions about the side effects of the widespread use of personalized recommendation algorithms.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0079135</identifier><identifier>PMID: 35489842</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Attitude ; Consensus ; Customization ; Humans ; Mathematical models ; Probability ; Side effects ; Social Media ; Voters</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-04, Vol.32 (4), p.043103-043103</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3</citedby><cites>FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3</cites><orcidid>0000-0002-3127-5336 ; 0000-0003-2510-2321 ; 0000-0002-3773-3801 ; 0000000325102321 ; 0000000231275336 ; 0000000237733801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35489842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iannelli, Giulio</creatorcontrib><creatorcontrib>De Marzo, Giordano</creatorcontrib><creatorcontrib>Castellano, Claudio</creatorcontrib><title>Filter bubble effect in the multistate voter model</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability
λ, a user interacts with “personalized information,” suggesting the opinion most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the existence of a nontrivial transition between a region (for small
λ) where a consensus is reached and a region (above a threshold
λ
c) where the system gets polarized and clusters of users with different opinions persist indefinitely. The threshold always vanishes for large system size
N, showing that a consensus becomes impossible for a large number of users. This finding opens new questions about the side effects of the widespread use of personalized recommendation algorithms.</description><subject>Algorithms</subject><subject>Attitude</subject><subject>Consensus</subject><subject>Customization</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Probability</subject><subject>Side effects</subject><subject>Social Media</subject><subject>Voters</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFFurB_-ABLyokDr7mc1RilWh4EXPIbuZxZQkW7NJwX9vQquCgqeZw8M7w0vIOYU5BcVv5RwgSSmXB2RKQadxojQ7HHcpYioBJuQkhDUAUMblMZlwKXSqBZsStiyrDtvI9MZUGKFzaLuobKLuDaO6r7oydHmH0daPqvYFVqfkyOVVwLP9nJHX5f3L4jFePT88Le5WseWad7EGA9RIzq0CZwuacysSAWgERWUK5I5qliuaMJFyTVkugdMElQMqHZOOz8jVLnfT-vceQ5fVZbBYVXmDvg8ZU1IzlvBUDvTyF137vm2G7wYllKZiPDIj1ztlWx9Ciy7btGWdtx8ZhWwsMpPZvsjBXuwTe1Nj8S2_mhvAzQ4EWw4Nlb75Nlvf_iRlm8L9h_-e_gTsJoY4</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Iannelli, Giulio</creator><creator>De Marzo, Giordano</creator><creator>Castellano, Claudio</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3127-5336</orcidid><orcidid>https://orcid.org/0000-0003-2510-2321</orcidid><orcidid>https://orcid.org/0000-0002-3773-3801</orcidid><orcidid>https://orcid.org/0000000325102321</orcidid><orcidid>https://orcid.org/0000000231275336</orcidid><orcidid>https://orcid.org/0000000237733801</orcidid></search><sort><creationdate>202204</creationdate><title>Filter bubble effect in the multistate voter model</title><author>Iannelli, Giulio ; De Marzo, Giordano ; Castellano, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Attitude</topic><topic>Consensus</topic><topic>Customization</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Probability</topic><topic>Side effects</topic><topic>Social Media</topic><topic>Voters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iannelli, Giulio</creatorcontrib><creatorcontrib>De Marzo, Giordano</creatorcontrib><creatorcontrib>Castellano, Claudio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iannelli, Giulio</au><au>De Marzo, Giordano</au><au>Castellano, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filter bubble effect in the multistate voter model</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2022-04</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>043103</spage><epage>043103</epage><pages>043103-043103</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability
λ, a user interacts with “personalized information,” suggesting the opinion most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the existence of a nontrivial transition between a region (for small
λ) where a consensus is reached and a region (above a threshold
λ
c) where the system gets polarized and clusters of users with different opinions persist indefinitely. The threshold always vanishes for large system size
N, showing that a consensus becomes impossible for a large number of users. This finding opens new questions about the side effects of the widespread use of personalized recommendation algorithms.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35489842</pmid><doi>10.1063/5.0079135</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3127-5336</orcidid><orcidid>https://orcid.org/0000-0003-2510-2321</orcidid><orcidid>https://orcid.org/0000-0002-3773-3801</orcidid><orcidid>https://orcid.org/0000000325102321</orcidid><orcidid>https://orcid.org/0000000231275336</orcidid><orcidid>https://orcid.org/0000000237733801</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2022-04, Vol.32 (4), p.043103-043103 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_journals_2646814249 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Attitude Consensus Customization Humans Mathematical models Probability Side effects Social Media Voters |
title | Filter bubble effect in the multistate voter model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filter%20bubble%20effect%20in%20the%20multistate%20voter%20model&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Iannelli,%20Giulio&rft.date=2022-04&rft.volume=32&rft.issue=4&rft.spage=043103&rft.epage=043103&rft.pages=043103-043103&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0079135&rft_dat=%3Cproquest_pubme%3E2658227395%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646814249&rft_id=info:pmid/35489842&rfr_iscdi=true |