Loading…

Filter bubble effect in the multistate voter model

Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by consi...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2022-04, Vol.32 (4), p.043103-043103
Main Authors: Iannelli, Giulio, De Marzo, Giordano, Castellano, Claudio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3
cites cdi_FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3
container_end_page 043103
container_issue 4
container_start_page 043103
container_title Chaos (Woodbury, N.Y.)
container_volume 32
creator Iannelli, Giulio
De Marzo, Giordano
Castellano, Claudio
description Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability λ, a user interacts with “personalized information,” suggesting the opinion most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the existence of a nontrivial transition between a region (for small λ) where a consensus is reached and a region (above a threshold λ c) where the system gets polarized and clusters of users with different opinions persist indefinitely. The threshold always vanishes for large system size N, showing that a consensus becomes impossible for a large number of users. This finding opens new questions about the side effects of the widespread use of personalized recommendation algorithms.
doi_str_mv 10.1063/5.0079135
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2646814249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658227395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFFurB_-ABLyokDr7mc1RilWh4EXPIbuZxZQkW7NJwX9vQquCgqeZw8M7w0vIOYU5BcVv5RwgSSmXB2RKQadxojQ7HHcpYioBJuQkhDUAUMblMZlwKXSqBZsStiyrDtvI9MZUGKFzaLuobKLuDaO6r7oydHmH0daPqvYFVqfkyOVVwLP9nJHX5f3L4jFePT88Le5WseWad7EGA9RIzq0CZwuacysSAWgERWUK5I5qliuaMJFyTVkugdMElQMqHZOOz8jVLnfT-vceQ5fVZbBYVXmDvg8ZU1IzlvBUDvTyF137vm2G7wYllKZiPDIj1ztlWx9Ciy7btGWdtx8ZhWwsMpPZvsjBXuwTe1Nj8S2_mhvAzQ4EWw4Nlb75Nlvf_iRlm8L9h_-e_gTsJoY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646814249</pqid></control><display><type>article</type><title>Filter bubble effect in the multistate voter model</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Iannelli, Giulio ; De Marzo, Giordano ; Castellano, Claudio</creator><creatorcontrib>Iannelli, Giulio ; De Marzo, Giordano ; Castellano, Claudio</creatorcontrib><description>Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability λ, a user interacts with “personalized information,” suggesting the opinion most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the existence of a nontrivial transition between a region (for small λ) where a consensus is reached and a region (above a threshold λ c) where the system gets polarized and clusters of users with different opinions persist indefinitely. The threshold always vanishes for large system size N, showing that a consensus becomes impossible for a large number of users. This finding opens new questions about the side effects of the widespread use of personalized recommendation algorithms.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0079135</identifier><identifier>PMID: 35489842</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Attitude ; Consensus ; Customization ; Humans ; Mathematical models ; Probability ; Side effects ; Social Media ; Voters</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-04, Vol.32 (4), p.043103-043103</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3</citedby><cites>FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3</cites><orcidid>0000-0002-3127-5336 ; 0000-0003-2510-2321 ; 0000-0002-3773-3801 ; 0000000325102321 ; 0000000231275336 ; 0000000237733801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35489842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iannelli, Giulio</creatorcontrib><creatorcontrib>De Marzo, Giordano</creatorcontrib><creatorcontrib>Castellano, Claudio</creatorcontrib><title>Filter bubble effect in the multistate voter model</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability λ, a user interacts with “personalized information,” suggesting the opinion most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the existence of a nontrivial transition between a region (for small λ) where a consensus is reached and a region (above a threshold λ c) where the system gets polarized and clusters of users with different opinions persist indefinitely. The threshold always vanishes for large system size N, showing that a consensus becomes impossible for a large number of users. This finding opens new questions about the side effects of the widespread use of personalized recommendation algorithms.</description><subject>Algorithms</subject><subject>Attitude</subject><subject>Consensus</subject><subject>Customization</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Probability</subject><subject>Side effects</subject><subject>Social Media</subject><subject>Voters</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFFurB_-ABLyokDr7mc1RilWh4EXPIbuZxZQkW7NJwX9vQquCgqeZw8M7w0vIOYU5BcVv5RwgSSmXB2RKQadxojQ7HHcpYioBJuQkhDUAUMblMZlwKXSqBZsStiyrDtvI9MZUGKFzaLuobKLuDaO6r7oydHmH0daPqvYFVqfkyOVVwLP9nJHX5f3L4jFePT88Le5WseWad7EGA9RIzq0CZwuacysSAWgERWUK5I5qliuaMJFyTVkugdMElQMqHZOOz8jVLnfT-vceQ5fVZbBYVXmDvg8ZU1IzlvBUDvTyF137vm2G7wYllKZiPDIj1ztlWx9Ciy7btGWdtx8ZhWwsMpPZvsjBXuwTe1Nj8S2_mhvAzQ4EWw4Nlb75Nlvf_iRlm8L9h_-e_gTsJoY4</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Iannelli, Giulio</creator><creator>De Marzo, Giordano</creator><creator>Castellano, Claudio</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3127-5336</orcidid><orcidid>https://orcid.org/0000-0003-2510-2321</orcidid><orcidid>https://orcid.org/0000-0002-3773-3801</orcidid><orcidid>https://orcid.org/0000000325102321</orcidid><orcidid>https://orcid.org/0000000231275336</orcidid><orcidid>https://orcid.org/0000000237733801</orcidid></search><sort><creationdate>202204</creationdate><title>Filter bubble effect in the multistate voter model</title><author>Iannelli, Giulio ; De Marzo, Giordano ; Castellano, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Attitude</topic><topic>Consensus</topic><topic>Customization</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Probability</topic><topic>Side effects</topic><topic>Social Media</topic><topic>Voters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iannelli, Giulio</creatorcontrib><creatorcontrib>De Marzo, Giordano</creatorcontrib><creatorcontrib>Castellano, Claudio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iannelli, Giulio</au><au>De Marzo, Giordano</au><au>Castellano, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filter bubble effect in the multistate voter model</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2022-04</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>043103</spage><epage>043103</epage><pages>043103-043103</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Social media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability λ, a user interacts with “personalized information,” suggesting the opinion most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the existence of a nontrivial transition between a region (for small λ) where a consensus is reached and a region (above a threshold λ c) where the system gets polarized and clusters of users with different opinions persist indefinitely. The threshold always vanishes for large system size N, showing that a consensus becomes impossible for a large number of users. This finding opens new questions about the side effects of the widespread use of personalized recommendation algorithms.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35489842</pmid><doi>10.1063/5.0079135</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3127-5336</orcidid><orcidid>https://orcid.org/0000-0003-2510-2321</orcidid><orcidid>https://orcid.org/0000-0002-3773-3801</orcidid><orcidid>https://orcid.org/0000000325102321</orcidid><orcidid>https://orcid.org/0000000231275336</orcidid><orcidid>https://orcid.org/0000000237733801</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2022-04, Vol.32 (4), p.043103-043103
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_journals_2646814249
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Attitude
Consensus
Customization
Humans
Mathematical models
Probability
Side effects
Social Media
Voters
title Filter bubble effect in the multistate voter model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filter%20bubble%20effect%20in%20the%20multistate%20voter%20model&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Iannelli,%20Giulio&rft.date=2022-04&rft.volume=32&rft.issue=4&rft.spage=043103&rft.epage=043103&rft.pages=043103-043103&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0079135&rft_dat=%3Cproquest_pubme%3E2658227395%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-80b01b533c60fcd1a3c4740eb41e6bde3f182a6172493812a50317e6f015f25f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646814249&rft_id=info:pmid/35489842&rfr_iscdi=true