Loading…
Hydraulic control of flow in a multi-passage system connecting two basins
When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom wat...
Saved in:
Published in: | Journal of fluid mechanics 2022-06, Vol.940, Article A8 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 940 |
creator | Tan, S. Pratt, L.J. Voet, G. Cusack, J.M. Helfrich, K.R. Alford, M.H. Girton, J.B. Carter, G.S. |
description | When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence. |
doi_str_mv | 10.1017/jfm.2022.212 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646921596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_212</cupid><sourcerecordid>2646921596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOvna7RylqCwUveg7ZbFJSdjc1yVL6701pwYungeF532EehB4JlARI_bKzQ0mB0pISeoVmhFdNUVdcXKMZ5HVBCIVbdBfjDoAwaOoZWq-OXVBT7zTWfkzB99hbbHt_wG7ECg9Tn1yxVzGqrcHxGJMZTuRodHLjFqeDx62Kboz36MaqPpqHy5yj7_e3r-Wq2Hx-rJevm0IzDqnoat1Zo7nmlltLqFVt04IAJbhpWwHWmoXoGK000UwsuCUdiAUVTAhgtuZsjp7OvfvgfyYTk9z5KYz5pKRV_pgS0VSZej5TOvgYg7FyH9ygwlESkCdZMsuSJ1kyy8p4ecHV0AbXbc1f67-BXzKkbDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646921596</pqid></control><display><type>article</type><title>Hydraulic control of flow in a multi-passage system connecting two basins</title><source>Cambridge Journals Online</source><creator>Tan, S. ; Pratt, L.J. ; Voet, G. ; Cusack, J.M. ; Helfrich, K.R. ; Alford, M.H. ; Girton, J.B. ; Carter, G.S.</creator><creatorcontrib>Tan, S. ; Pratt, L.J. ; Voet, G. ; Cusack, J.M. ; Helfrich, K.R. ; Alford, M.H. ; Girton, J.B. ; Carter, G.S.</creatorcontrib><description>When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.212</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Abyssal circulation ; Abyssal zone ; Bottom friction ; Bottom water ; Channel flow ; Connecting ; Energy dissipation ; Flow control ; Fluid mechanics ; Hydraulic control ; Hydraulics ; JFM Papers ; Mathematical models ; Numerical models ; Partitioning ; Potential vorticity ; Rotation ; Steady state ; Theories ; Topography ; Upstream ; Volume transport ; Vorticity ; Water circulation</subject><ispartof>Journal of fluid mechanics, 2022-06, Vol.940, Article A8</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press.</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743</citedby><cites>FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743</cites><orcidid>0000-0002-4598-3472 ; 0000-0003-2065-4397 ; 0000-0001-5692-3216 ; 0000-0003-1975-186X ; 0000-0002-6318-0737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022002129/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Tan, S.</creatorcontrib><creatorcontrib>Pratt, L.J.</creatorcontrib><creatorcontrib>Voet, G.</creatorcontrib><creatorcontrib>Cusack, J.M.</creatorcontrib><creatorcontrib>Helfrich, K.R.</creatorcontrib><creatorcontrib>Alford, M.H.</creatorcontrib><creatorcontrib>Girton, J.B.</creatorcontrib><creatorcontrib>Carter, G.S.</creatorcontrib><title>Hydraulic control of flow in a multi-passage system connecting two basins</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.</description><subject>Abyssal circulation</subject><subject>Abyssal zone</subject><subject>Bottom friction</subject><subject>Bottom water</subject><subject>Channel flow</subject><subject>Connecting</subject><subject>Energy dissipation</subject><subject>Flow control</subject><subject>Fluid mechanics</subject><subject>Hydraulic control</subject><subject>Hydraulics</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Partitioning</subject><subject>Potential vorticity</subject><subject>Rotation</subject><subject>Steady state</subject><subject>Theories</subject><subject>Topography</subject><subject>Upstream</subject><subject>Volume transport</subject><subject>Vorticity</subject><subject>Water circulation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOvna7RylqCwUveg7ZbFJSdjc1yVL6701pwYungeF532EehB4JlARI_bKzQ0mB0pISeoVmhFdNUVdcXKMZ5HVBCIVbdBfjDoAwaOoZWq-OXVBT7zTWfkzB99hbbHt_wG7ECg9Tn1yxVzGqrcHxGJMZTuRodHLjFqeDx62Kboz36MaqPpqHy5yj7_e3r-Wq2Hx-rJevm0IzDqnoat1Zo7nmlltLqFVt04IAJbhpWwHWmoXoGK000UwsuCUdiAUVTAhgtuZsjp7OvfvgfyYTk9z5KYz5pKRV_pgS0VSZej5TOvgYg7FyH9ygwlESkCdZMsuSJ1kyy8p4ecHV0AbXbc1f67-BXzKkbDk</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Tan, S.</creator><creator>Pratt, L.J.</creator><creator>Voet, G.</creator><creator>Cusack, J.M.</creator><creator>Helfrich, K.R.</creator><creator>Alford, M.H.</creator><creator>Girton, J.B.</creator><creator>Carter, G.S.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4598-3472</orcidid><orcidid>https://orcid.org/0000-0003-2065-4397</orcidid><orcidid>https://orcid.org/0000-0001-5692-3216</orcidid><orcidid>https://orcid.org/0000-0003-1975-186X</orcidid><orcidid>https://orcid.org/0000-0002-6318-0737</orcidid></search><sort><creationdate>20220610</creationdate><title>Hydraulic control of flow in a multi-passage system connecting two basins</title><author>Tan, S. ; Pratt, L.J. ; Voet, G. ; Cusack, J.M. ; Helfrich, K.R. ; Alford, M.H. ; Girton, J.B. ; Carter, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abyssal circulation</topic><topic>Abyssal zone</topic><topic>Bottom friction</topic><topic>Bottom water</topic><topic>Channel flow</topic><topic>Connecting</topic><topic>Energy dissipation</topic><topic>Flow control</topic><topic>Fluid mechanics</topic><topic>Hydraulic control</topic><topic>Hydraulics</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Partitioning</topic><topic>Potential vorticity</topic><topic>Rotation</topic><topic>Steady state</topic><topic>Theories</topic><topic>Topography</topic><topic>Upstream</topic><topic>Volume transport</topic><topic>Vorticity</topic><topic>Water circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, S.</creatorcontrib><creatorcontrib>Pratt, L.J.</creatorcontrib><creatorcontrib>Voet, G.</creatorcontrib><creatorcontrib>Cusack, J.M.</creatorcontrib><creatorcontrib>Helfrich, K.R.</creatorcontrib><creatorcontrib>Alford, M.H.</creatorcontrib><creatorcontrib>Girton, J.B.</creatorcontrib><creatorcontrib>Carter, G.S.</creatorcontrib><collection>Cambridge Journals website</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, S.</au><au>Pratt, L.J.</au><au>Voet, G.</au><au>Cusack, J.M.</au><au>Helfrich, K.R.</au><au>Alford, M.H.</au><au>Girton, J.B.</au><au>Carter, G.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydraulic control of flow in a multi-passage system connecting two basins</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>940</volume><artnum>A8</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.212</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-4598-3472</orcidid><orcidid>https://orcid.org/0000-0003-2065-4397</orcidid><orcidid>https://orcid.org/0000-0001-5692-3216</orcidid><orcidid>https://orcid.org/0000-0003-1975-186X</orcidid><orcidid>https://orcid.org/0000-0002-6318-0737</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2022-06, Vol.940, Article A8 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2646921596 |
source | Cambridge Journals Online |
subjects | Abyssal circulation Abyssal zone Bottom friction Bottom water Channel flow Connecting Energy dissipation Flow control Fluid mechanics Hydraulic control Hydraulics JFM Papers Mathematical models Numerical models Partitioning Potential vorticity Rotation Steady state Theories Topography Upstream Volume transport Vorticity Water circulation |
title | Hydraulic control of flow in a multi-passage system connecting two basins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydraulic%20control%20of%20flow%20in%20a%20multi-passage%20system%20connecting%20two%20basins&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Tan,%20S.&rft.date=2022-06-10&rft.volume=940&rft.artnum=A8&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.212&rft_dat=%3Cproquest_cross%3E2646921596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646921596&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_212&rfr_iscdi=true |