Loading…

Hydraulic control of flow in a multi-passage system connecting two basins

When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom wat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2022-06, Vol.940, Article A8
Main Authors: Tan, S., Pratt, L.J., Voet, G., Cusack, J.M., Helfrich, K.R., Alford, M.H., Girton, J.B., Carter, G.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743
cites cdi_FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 940
creator Tan, S.
Pratt, L.J.
Voet, G.
Cusack, J.M.
Helfrich, K.R.
Alford, M.H.
Girton, J.B.
Carter, G.S.
description When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.
doi_str_mv 10.1017/jfm.2022.212
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646921596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_212</cupid><sourcerecordid>2646921596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOvna7RylqCwUveg7ZbFJSdjc1yVL6701pwYungeF532EehB4JlARI_bKzQ0mB0pISeoVmhFdNUVdcXKMZ5HVBCIVbdBfjDoAwaOoZWq-OXVBT7zTWfkzB99hbbHt_wG7ECg9Tn1yxVzGqrcHxGJMZTuRodHLjFqeDx62Kboz36MaqPpqHy5yj7_e3r-Wq2Hx-rJevm0IzDqnoat1Zo7nmlltLqFVt04IAJbhpWwHWmoXoGK000UwsuCUdiAUVTAhgtuZsjp7OvfvgfyYTk9z5KYz5pKRV_pgS0VSZej5TOvgYg7FyH9ygwlESkCdZMsuSJ1kyy8p4ecHV0AbXbc1f67-BXzKkbDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646921596</pqid></control><display><type>article</type><title>Hydraulic control of flow in a multi-passage system connecting two basins</title><source>Cambridge Journals Online</source><creator>Tan, S. ; Pratt, L.J. ; Voet, G. ; Cusack, J.M. ; Helfrich, K.R. ; Alford, M.H. ; Girton, J.B. ; Carter, G.S.</creator><creatorcontrib>Tan, S. ; Pratt, L.J. ; Voet, G. ; Cusack, J.M. ; Helfrich, K.R. ; Alford, M.H. ; Girton, J.B. ; Carter, G.S.</creatorcontrib><description>When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.212</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Abyssal circulation ; Abyssal zone ; Bottom friction ; Bottom water ; Channel flow ; Connecting ; Energy dissipation ; Flow control ; Fluid mechanics ; Hydraulic control ; Hydraulics ; JFM Papers ; Mathematical models ; Numerical models ; Partitioning ; Potential vorticity ; Rotation ; Steady state ; Theories ; Topography ; Upstream ; Volume transport ; Vorticity ; Water circulation</subject><ispartof>Journal of fluid mechanics, 2022-06, Vol.940, Article A8</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press.</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743</citedby><cites>FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743</cites><orcidid>0000-0002-4598-3472 ; 0000-0003-2065-4397 ; 0000-0001-5692-3216 ; 0000-0003-1975-186X ; 0000-0002-6318-0737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022002129/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Tan, S.</creatorcontrib><creatorcontrib>Pratt, L.J.</creatorcontrib><creatorcontrib>Voet, G.</creatorcontrib><creatorcontrib>Cusack, J.M.</creatorcontrib><creatorcontrib>Helfrich, K.R.</creatorcontrib><creatorcontrib>Alford, M.H.</creatorcontrib><creatorcontrib>Girton, J.B.</creatorcontrib><creatorcontrib>Carter, G.S.</creatorcontrib><title>Hydraulic control of flow in a multi-passage system connecting two basins</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.</description><subject>Abyssal circulation</subject><subject>Abyssal zone</subject><subject>Bottom friction</subject><subject>Bottom water</subject><subject>Channel flow</subject><subject>Connecting</subject><subject>Energy dissipation</subject><subject>Flow control</subject><subject>Fluid mechanics</subject><subject>Hydraulic control</subject><subject>Hydraulics</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Partitioning</subject><subject>Potential vorticity</subject><subject>Rotation</subject><subject>Steady state</subject><subject>Theories</subject><subject>Topography</subject><subject>Upstream</subject><subject>Volume transport</subject><subject>Vorticity</subject><subject>Water circulation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOvna7RylqCwUveg7ZbFJSdjc1yVL6701pwYungeF532EehB4JlARI_bKzQ0mB0pISeoVmhFdNUVdcXKMZ5HVBCIVbdBfjDoAwaOoZWq-OXVBT7zTWfkzB99hbbHt_wG7ECg9Tn1yxVzGqrcHxGJMZTuRodHLjFqeDx62Kboz36MaqPpqHy5yj7_e3r-Wq2Hx-rJevm0IzDqnoat1Zo7nmlltLqFVt04IAJbhpWwHWmoXoGK000UwsuCUdiAUVTAhgtuZsjp7OvfvgfyYTk9z5KYz5pKRV_pgS0VSZej5TOvgYg7FyH9ygwlESkCdZMsuSJ1kyy8p4ecHV0AbXbc1f67-BXzKkbDk</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Tan, S.</creator><creator>Pratt, L.J.</creator><creator>Voet, G.</creator><creator>Cusack, J.M.</creator><creator>Helfrich, K.R.</creator><creator>Alford, M.H.</creator><creator>Girton, J.B.</creator><creator>Carter, G.S.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4598-3472</orcidid><orcidid>https://orcid.org/0000-0003-2065-4397</orcidid><orcidid>https://orcid.org/0000-0001-5692-3216</orcidid><orcidid>https://orcid.org/0000-0003-1975-186X</orcidid><orcidid>https://orcid.org/0000-0002-6318-0737</orcidid></search><sort><creationdate>20220610</creationdate><title>Hydraulic control of flow in a multi-passage system connecting two basins</title><author>Tan, S. ; Pratt, L.J. ; Voet, G. ; Cusack, J.M. ; Helfrich, K.R. ; Alford, M.H. ; Girton, J.B. ; Carter, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abyssal circulation</topic><topic>Abyssal zone</topic><topic>Bottom friction</topic><topic>Bottom water</topic><topic>Channel flow</topic><topic>Connecting</topic><topic>Energy dissipation</topic><topic>Flow control</topic><topic>Fluid mechanics</topic><topic>Hydraulic control</topic><topic>Hydraulics</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Partitioning</topic><topic>Potential vorticity</topic><topic>Rotation</topic><topic>Steady state</topic><topic>Theories</topic><topic>Topography</topic><topic>Upstream</topic><topic>Volume transport</topic><topic>Vorticity</topic><topic>Water circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, S.</creatorcontrib><creatorcontrib>Pratt, L.J.</creatorcontrib><creatorcontrib>Voet, G.</creatorcontrib><creatorcontrib>Cusack, J.M.</creatorcontrib><creatorcontrib>Helfrich, K.R.</creatorcontrib><creatorcontrib>Alford, M.H.</creatorcontrib><creatorcontrib>Girton, J.B.</creatorcontrib><creatorcontrib>Carter, G.S.</creatorcontrib><collection>Cambridge Journals website</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, S.</au><au>Pratt, L.J.</au><au>Voet, G.</au><au>Cusack, J.M.</au><au>Helfrich, K.R.</au><au>Alford, M.H.</au><au>Girton, J.B.</au><au>Carter, G.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydraulic control of flow in a multi-passage system connecting two basins</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>940</volume><artnum>A8</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.212</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-4598-3472</orcidid><orcidid>https://orcid.org/0000-0003-2065-4397</orcidid><orcidid>https://orcid.org/0000-0001-5692-3216</orcidid><orcidid>https://orcid.org/0000-0003-1975-186X</orcidid><orcidid>https://orcid.org/0000-0002-6318-0737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-06, Vol.940, Article A8
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2646921596
source Cambridge Journals Online
subjects Abyssal circulation
Abyssal zone
Bottom friction
Bottom water
Channel flow
Connecting
Energy dissipation
Flow control
Fluid mechanics
Hydraulic control
Hydraulics
JFM Papers
Mathematical models
Numerical models
Partitioning
Potential vorticity
Rotation
Steady state
Theories
Topography
Upstream
Volume transport
Vorticity
Water circulation
title Hydraulic control of flow in a multi-passage system connecting two basins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydraulic%20control%20of%20flow%20in%20a%20multi-passage%20system%20connecting%20two%20basins&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Tan,%20S.&rft.date=2022-06-10&rft.volume=940&rft.artnum=A8&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.212&rft_dat=%3Cproquest_cross%3E2646921596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-d7cdfec4c4f4ff12fab9b050a54ebb50ffe85d326c1c3584f1d0582535503f743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646921596&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_212&rfr_iscdi=true