Loading…

Bayesian calibration of multi-level model with unobservable distributed response and application to miter gates

•Bayesian calibration of multi-level model with unobservable and distributed outputs•Simultaneous model parameter estimation and model discrepancy quantification•A two-phase estimation method to overcome computational challenge•Practical application of the proposed approach to miter gate Bayesian ca...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2022-05, Vol.170, p.108852, Article 108852
Main Authors: Jiang, Chen, Vega, Manuel A., Ramancha, Mukesh K., Todd, Michael D., Conte, Joel P., Parno, Matthew, Hu, Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-71e951ad329aa122f8a0283f95a8539749f0de4a40236a0a4aabc77b2225d3a23
cites cdi_FETCH-LOGICAL-c376t-71e951ad329aa122f8a0283f95a8539749f0de4a40236a0a4aabc77b2225d3a23
container_end_page
container_issue
container_start_page 108852
container_title Mechanical systems and signal processing
container_volume 170
creator Jiang, Chen
Vega, Manuel A.
Ramancha, Mukesh K.
Todd, Michael D.
Conte, Joel P.
Parno, Matthew
Hu, Zhen
description •Bayesian calibration of multi-level model with unobservable and distributed outputs•Simultaneous model parameter estimation and model discrepancy quantification•A two-phase estimation method to overcome computational challenge•Practical application of the proposed approach to miter gate Bayesian calibration plays a vital role in improving the validity of computational models’ predictive power. However, the presence of unobservable distributed responses and uncertain model parameters in multi-level models poses challenges to Bayesian calibration, due to the lack of direct observations and the difficulty in identifying the hidden and distributed model discrepancy under uncertainty. This paper proposes a Bayesian calibration framework for multi-level simulation models to calibrate an unobservable distributed model using measurements of an observable model. In the proposed framework, the distributed model discrepancy of an unobservable model with distributed response is first represented as a series of orthogonal polynomials, with the polynomial coefficients modelled by surrogate models with unknown hyper-parameters. A two-phase machine learning method is then developed to construct surrogate models of the polynomial coefficients based on measurements of an observable model. The constructed model discrepancy is finally used to update the uncertain model parameters by following a modularized Bayesian calibration scheme. The developed framework is applied to the joint Bayesian calibration of the uncertain gap length and unobservable and distributed boundary condition model for a miter gate problem. Results of the miter gate application demonstrate the efficacy of the proposed framework.
doi_str_mv 10.1016/j.ymssp.2022.108852
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646977935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327022000498</els_id><sourcerecordid>2646977935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-71e951ad329aa122f8a0283f95a8539749f0de4a40236a0a4aabc77b2225d3a23</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EEsfBL6CxRJ3Dj7xcUADiJZ1EA7W1iTfgKImD7Ry6f0-OUNPsSqOZWe1HyCVnG854ft1u9n0I40YwIWalLDNxRFacqTzhgufHZDVrZSJFwU7JWQgtY0ylLF8Rdwd7DBYGWkNnKw_RuoG6hvZTF23S4Q472jszz28bP-k0uCqg30HVITU2RG-rKaKhHsPohoAUBkNhHDtbL13R0d5G9PQDIoZzctJAF_Dib6_J--PD2_1zsn19erm_3Sa1LPKYFBxVxsFIoQC4EE0JTJSyURmUmVRFqhpmMIWUCZkDgxSgqouiEkJkRoKQa3K19I7efU0Yom7d5If5pBZ5mquiUDKbXXJx1d6F4LHRo7c9-L3mTB_I6lb_ktUHsnohO6dulhTOD-wseh1qi0ONxnqsozbO_pv_AVdyhLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646977935</pqid></control><display><type>article</type><title>Bayesian calibration of multi-level model with unobservable distributed response and application to miter gates</title><source>ScienceDirect Freedom Collection</source><creator>Jiang, Chen ; Vega, Manuel A. ; Ramancha, Mukesh K. ; Todd, Michael D. ; Conte, Joel P. ; Parno, Matthew ; Hu, Zhen</creator><creatorcontrib>Jiang, Chen ; Vega, Manuel A. ; Ramancha, Mukesh K. ; Todd, Michael D. ; Conte, Joel P. ; Parno, Matthew ; Hu, Zhen</creatorcontrib><description>•Bayesian calibration of multi-level model with unobservable and distributed outputs•Simultaneous model parameter estimation and model discrepancy quantification•A two-phase estimation method to overcome computational challenge•Practical application of the proposed approach to miter gate Bayesian calibration plays a vital role in improving the validity of computational models’ predictive power. However, the presence of unobservable distributed responses and uncertain model parameters in multi-level models poses challenges to Bayesian calibration, due to the lack of direct observations and the difficulty in identifying the hidden and distributed model discrepancy under uncertainty. This paper proposes a Bayesian calibration framework for multi-level simulation models to calibrate an unobservable distributed model using measurements of an observable model. In the proposed framework, the distributed model discrepancy of an unobservable model with distributed response is first represented as a series of orthogonal polynomials, with the polynomial coefficients modelled by surrogate models with unknown hyper-parameters. A two-phase machine learning method is then developed to construct surrogate models of the polynomial coefficients based on measurements of an observable model. The constructed model discrepancy is finally used to update the uncertain model parameters by following a modularized Bayesian calibration scheme. The developed framework is applied to the joint Bayesian calibration of the uncertain gap length and unobservable and distributed boundary condition model for a miter gate problem. Results of the miter gate application demonstrate the efficacy of the proposed framework.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2022.108852</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian calibration ; Boundary conditions ; Calibration ; Distributed model discrepancy ; Machine learning ; Mathematical models ; Miter gates ; Mitre gates ; Multi-level model ; Parameter uncertainty ; Polynomials ; Surrogate model ; Unobservable distributed response</subject><ispartof>Mechanical systems and signal processing, 2022-05, Vol.170, p.108852, Article 108852</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-71e951ad329aa122f8a0283f95a8539749f0de4a40236a0a4aabc77b2225d3a23</citedby><cites>FETCH-LOGICAL-c376t-71e951ad329aa122f8a0283f95a8539749f0de4a40236a0a4aabc77b2225d3a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Vega, Manuel A.</creatorcontrib><creatorcontrib>Ramancha, Mukesh K.</creatorcontrib><creatorcontrib>Todd, Michael D.</creatorcontrib><creatorcontrib>Conte, Joel P.</creatorcontrib><creatorcontrib>Parno, Matthew</creatorcontrib><creatorcontrib>Hu, Zhen</creatorcontrib><title>Bayesian calibration of multi-level model with unobservable distributed response and application to miter gates</title><title>Mechanical systems and signal processing</title><description>•Bayesian calibration of multi-level model with unobservable and distributed outputs•Simultaneous model parameter estimation and model discrepancy quantification•A two-phase estimation method to overcome computational challenge•Practical application of the proposed approach to miter gate Bayesian calibration plays a vital role in improving the validity of computational models’ predictive power. However, the presence of unobservable distributed responses and uncertain model parameters in multi-level models poses challenges to Bayesian calibration, due to the lack of direct observations and the difficulty in identifying the hidden and distributed model discrepancy under uncertainty. This paper proposes a Bayesian calibration framework for multi-level simulation models to calibrate an unobservable distributed model using measurements of an observable model. In the proposed framework, the distributed model discrepancy of an unobservable model with distributed response is first represented as a series of orthogonal polynomials, with the polynomial coefficients modelled by surrogate models with unknown hyper-parameters. A two-phase machine learning method is then developed to construct surrogate models of the polynomial coefficients based on measurements of an observable model. The constructed model discrepancy is finally used to update the uncertain model parameters by following a modularized Bayesian calibration scheme. The developed framework is applied to the joint Bayesian calibration of the uncertain gap length and unobservable and distributed boundary condition model for a miter gate problem. Results of the miter gate application demonstrate the efficacy of the proposed framework.</description><subject>Bayesian analysis</subject><subject>Bayesian calibration</subject><subject>Boundary conditions</subject><subject>Calibration</subject><subject>Distributed model discrepancy</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Miter gates</subject><subject>Mitre gates</subject><subject>Multi-level model</subject><subject>Parameter uncertainty</subject><subject>Polynomials</subject><subject>Surrogate model</subject><subject>Unobservable distributed response</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhC0EEsfBL6CxRJ3Dj7xcUADiJZ1EA7W1iTfgKImD7Ry6f0-OUNPsSqOZWe1HyCVnG854ft1u9n0I40YwIWalLDNxRFacqTzhgufHZDVrZSJFwU7JWQgtY0ylLF8Rdwd7DBYGWkNnKw_RuoG6hvZTF23S4Q472jszz28bP-k0uCqg30HVITU2RG-rKaKhHsPohoAUBkNhHDtbL13R0d5G9PQDIoZzctJAF_Dib6_J--PD2_1zsn19erm_3Sa1LPKYFBxVxsFIoQC4EE0JTJSyURmUmVRFqhpmMIWUCZkDgxSgqouiEkJkRoKQa3K19I7efU0Yom7d5If5pBZ5mquiUDKbXXJx1d6F4LHRo7c9-L3mTB_I6lb_ktUHsnohO6dulhTOD-wseh1qi0ONxnqsozbO_pv_AVdyhLU</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Jiang, Chen</creator><creator>Vega, Manuel A.</creator><creator>Ramancha, Mukesh K.</creator><creator>Todd, Michael D.</creator><creator>Conte, Joel P.</creator><creator>Parno, Matthew</creator><creator>Hu, Zhen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220501</creationdate><title>Bayesian calibration of multi-level model with unobservable distributed response and application to miter gates</title><author>Jiang, Chen ; Vega, Manuel A. ; Ramancha, Mukesh K. ; Todd, Michael D. ; Conte, Joel P. ; Parno, Matthew ; Hu, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-71e951ad329aa122f8a0283f95a8539749f0de4a40236a0a4aabc77b2225d3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Bayesian calibration</topic><topic>Boundary conditions</topic><topic>Calibration</topic><topic>Distributed model discrepancy</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Miter gates</topic><topic>Mitre gates</topic><topic>Multi-level model</topic><topic>Parameter uncertainty</topic><topic>Polynomials</topic><topic>Surrogate model</topic><topic>Unobservable distributed response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Vega, Manuel A.</creatorcontrib><creatorcontrib>Ramancha, Mukesh K.</creatorcontrib><creatorcontrib>Todd, Michael D.</creatorcontrib><creatorcontrib>Conte, Joel P.</creatorcontrib><creatorcontrib>Parno, Matthew</creatorcontrib><creatorcontrib>Hu, Zhen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chen</au><au>Vega, Manuel A.</au><au>Ramancha, Mukesh K.</au><au>Todd, Michael D.</au><au>Conte, Joel P.</au><au>Parno, Matthew</au><au>Hu, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian calibration of multi-level model with unobservable distributed response and application to miter gates</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>170</volume><spage>108852</spage><pages>108852-</pages><artnum>108852</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Bayesian calibration of multi-level model with unobservable and distributed outputs•Simultaneous model parameter estimation and model discrepancy quantification•A two-phase estimation method to overcome computational challenge•Practical application of the proposed approach to miter gate Bayesian calibration plays a vital role in improving the validity of computational models’ predictive power. However, the presence of unobservable distributed responses and uncertain model parameters in multi-level models poses challenges to Bayesian calibration, due to the lack of direct observations and the difficulty in identifying the hidden and distributed model discrepancy under uncertainty. This paper proposes a Bayesian calibration framework for multi-level simulation models to calibrate an unobservable distributed model using measurements of an observable model. In the proposed framework, the distributed model discrepancy of an unobservable model with distributed response is first represented as a series of orthogonal polynomials, with the polynomial coefficients modelled by surrogate models with unknown hyper-parameters. A two-phase machine learning method is then developed to construct surrogate models of the polynomial coefficients based on measurements of an observable model. The constructed model discrepancy is finally used to update the uncertain model parameters by following a modularized Bayesian calibration scheme. The developed framework is applied to the joint Bayesian calibration of the uncertain gap length and unobservable and distributed boundary condition model for a miter gate problem. Results of the miter gate application demonstrate the efficacy of the proposed framework.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2022.108852</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2022-05, Vol.170, p.108852, Article 108852
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_2646977935
source ScienceDirect Freedom Collection
subjects Bayesian analysis
Bayesian calibration
Boundary conditions
Calibration
Distributed model discrepancy
Machine learning
Mathematical models
Miter gates
Mitre gates
Multi-level model
Parameter uncertainty
Polynomials
Surrogate model
Unobservable distributed response
title Bayesian calibration of multi-level model with unobservable distributed response and application to miter gates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20calibration%20of%20multi-level%20model%20with%20unobservable%20distributed%20response%20and%20application%20to%20miter%20gates&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Jiang,%20Chen&rft.date=2022-05-01&rft.volume=170&rft.spage=108852&rft.pages=108852-&rft.artnum=108852&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2022.108852&rft_dat=%3Cproquest_cross%3E2646977935%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-71e951ad329aa122f8a0283f95a8539749f0de4a40236a0a4aabc77b2225d3a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646977935&rft_id=info:pmid/&rfr_iscdi=true