Loading…

Relatively hyperbolic metric bundles and Cannon-Thurston map

Given a metric (graph) bundle \(X\) over \(B\) where all the fibres are strongly relatively hyperbolic and nonelementary we show that, under certain conditions, \(X\) is strongly hyperbolic relative to a collection of maximal cone-subbundles of horosphere-like spaces. Further, given a coarsely Lipsc...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-04
Main Author: Swathi Krishna
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Swathi Krishna
description Given a metric (graph) bundle \(X\) over \(B\) where all the fibres are strongly relatively hyperbolic and nonelementary we show that, under certain conditions, \(X\) is strongly hyperbolic relative to a collection of maximal cone-subbundles of horosphere-like spaces. Further, given a coarsely Lipschitz qi embedding \(i: A\to B\), we show that the pullback \(Y\) is strongly relatively hyperbolic and the map \(Y\to X\) admits a Cannon-Thurston (CT) map. As an application, we prove a group-theoretic analogue of this result for a relatively hyperbolic extension of groups.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2647059270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647059270</sourcerecordid><originalsourceid>FETCH-proquest_journals_26470592703</originalsourceid><addsrcrecordid>eNqNyssKgkAUgOEhCJLyHQZaC9MZLwXtpGgd7mXUEyrjGZtL4Nvnogdo9S3-f8MikPKUnFOAHYudG4UQkBeQZTJi1ydq5YcP6oX3y4y2MXpo-YTerjSBOo2OK-p4qYgMJVUfrPOG-KTmA9u-lHYY_9yz4_1WlY9ktuYd0Pl6NMHSmmrI00JkFyiE_O_6AnemN_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647059270</pqid></control><display><type>article</type><title>Relatively hyperbolic metric bundles and Cannon-Thurston map</title><source>Publicly Available Content Database</source><creator>Swathi Krishna</creator><creatorcontrib>Swathi Krishna</creatorcontrib><description>Given a metric (graph) bundle \(X\) over \(B\) where all the fibres are strongly relatively hyperbolic and nonelementary we show that, under certain conditions, \(X\) is strongly hyperbolic relative to a collection of maximal cone-subbundles of horosphere-like spaces. Further, given a coarsely Lipschitz qi embedding \(i: A\to B\), we show that the pullback \(Y\) is strongly relatively hyperbolic and the map \(Y\to X\) admits a Cannon-Thurston (CT) map. As an application, we prove a group-theoretic analogue of this result for a relatively hyperbolic extension of groups.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2647059270?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Swathi Krishna</creatorcontrib><title>Relatively hyperbolic metric bundles and Cannon-Thurston map</title><title>arXiv.org</title><description>Given a metric (graph) bundle \(X\) over \(B\) where all the fibres are strongly relatively hyperbolic and nonelementary we show that, under certain conditions, \(X\) is strongly hyperbolic relative to a collection of maximal cone-subbundles of horosphere-like spaces. Further, given a coarsely Lipschitz qi embedding \(i: A\to B\), we show that the pullback \(Y\) is strongly relatively hyperbolic and the map \(Y\to X\) admits a Cannon-Thurston (CT) map. As an application, we prove a group-theoretic analogue of this result for a relatively hyperbolic extension of groups.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyssKgkAUgOEhCJLyHQZaC9MZLwXtpGgd7mXUEyrjGZtL4Nvnogdo9S3-f8MikPKUnFOAHYudG4UQkBeQZTJi1ydq5YcP6oX3y4y2MXpo-YTerjSBOo2OK-p4qYgMJVUfrPOG-KTmA9u-lHYY_9yz4_1WlY9ktuYd0Pl6NMHSmmrI00JkFyiE_O_6AnemN_o</recordid><startdate>20220403</startdate><enddate>20220403</enddate><creator>Swathi Krishna</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220403</creationdate><title>Relatively hyperbolic metric bundles and Cannon-Thurston map</title><author>Swathi Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26470592703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Swathi Krishna</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swathi Krishna</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Relatively hyperbolic metric bundles and Cannon-Thurston map</atitle><jtitle>arXiv.org</jtitle><date>2022-04-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Given a metric (graph) bundle \(X\) over \(B\) where all the fibres are strongly relatively hyperbolic and nonelementary we show that, under certain conditions, \(X\) is strongly hyperbolic relative to a collection of maximal cone-subbundles of horosphere-like spaces. Further, given a coarsely Lipschitz qi embedding \(i: A\to B\), we show that the pullback \(Y\) is strongly relatively hyperbolic and the map \(Y\to X\) admits a Cannon-Thurston (CT) map. As an application, we prove a group-theoretic analogue of this result for a relatively hyperbolic extension of groups.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2647059270
source Publicly Available Content Database
title Relatively hyperbolic metric bundles and Cannon-Thurston map
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Relatively%20hyperbolic%20metric%20bundles%20and%20Cannon-Thurston%20map&rft.jtitle=arXiv.org&rft.au=Swathi%20Krishna&rft.date=2022-04-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2647059270%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26470592703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647059270&rft_id=info:pmid/&rfr_iscdi=true