Loading…

Development of Two Innovative 96-Microwell-Based Spectrophotometric Assays with High Throughput for Determination of Fluoroquinolone Antibiotics in their Pharmaceutical Formulations

Fluoroquinolone antibiotics (FQAs) have broad-spectrum antibacterial activity, high potency, variable indications, and excellent pharmacokinetic profi les. Many spectrophotometric assays have been described for the determination of FQAs in their pharmaceutical formulations; however, most of these as...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied spectroscopy 2022, Vol.89 (1), p.66-74
Main Authors: Khalil, N. Y., Al Qhatani, M. N., Al Qubaisi, K. A., Sayed, A. Y., Darwish, I. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluoroquinolone antibiotics (FQAs) have broad-spectrum antibacterial activity, high potency, variable indications, and excellent pharmacokinetic profi les. Many spectrophotometric assays have been described for the determination of FQAs in their pharmaceutical formulations; however, most of these assays have limited throughput for application in quality control laboratories. This study describes the development and validation of two innovative 96-microwellbased spectrophotometric assays with high throughput for the quality control of seven FQAs. These FQAs were levofloxacin (LEV), norfl oxacin (NOR), ciprofloxacin (CIP), gemifloxacin (GEM), danofloxacin (DAN), enrofloxacin (ENR), and marbofloxacin (MAR). The first assay (assay I) was developed for LEV, NOR, CIP, and GEM via the formation of red metal complexes with FeCl 3 . The second assay (assay II) was developed for LEV, DAN, ENR, and MAR via the formation of red charge transfer complexes with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The reactions of FQAs with both FeCl 3 and DDQ reagents were performed in transparent 96-microwell plates, and the absorbance of the colored complexes was measured at 460 nm using an absorbance microplate reader. The best reaction conditions were established for both assays, under which Beer's law was obeyed in the range of 10–100 μg/well with good correlation coefficients (0.9943–0.9982). The limits of detection were in the range of 4.5–7.5 μg/well, and the limits of quantification were in the range of 14.9–25.0 μg/well. Both assays showed high precision, as the values of the relative standard deviations (RSD) did not exceed 3.4%. The accuracy of both assays was proven by recovery studies, as the recovery values were in the range of 98.1–102.6% (± 0.9–2.7%). The assays were applied for the determination of all seven FQAs in their tablets with good accuracy and precision. The assays are simple, economical, and have the capacity for high-throughput testing; therefore, they are convenient and beneficial for the regular determination of FQAs in pharmaceutical formulations. An additional advantage of these assays is that all FQAs can be determined on a single system without modifications in the detection wavelength.
ISSN:0021-9037
1573-8647
DOI:10.1007/s10812-022-01327-3