Loading…

Knowledge Mining: A Cross-disciplinary Survey

Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better under...

Full description

Saved in:
Bibliographic Details
Published in:International journal of automation and computing 2022-04, Vol.19 (2), p.89-114
Main Authors: Rui, Yong, Carmona, Vicente Ivan Sanchez, Pourvali, Mohsen, Xing, Yun, Yi, Wei-Wen, Ruan, Hui-Bin, Zhang, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003
cites cdi_FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003
container_end_page 114
container_issue 2
container_start_page 89
container_title International journal of automation and computing
container_volume 19
creator Rui, Yong
Carmona, Vicente Ivan Sanchez
Pourvali, Mohsen
Xing, Yun
Yi, Wei-Wen
Ruan, Hui-Bin
Zhang, Yu
description Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey.
doi_str_mv 10.1007/s11633-022-1323-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647368933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647368933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003</originalsourceid><addsrcrecordid>eNo9kE9LxDAUxIMouKz7AbwVPEffS9qX1NtS_IcrHlTwFpo0XSK1XZNdZb-9LSueZg7DzPBj7BzhEgHUVUIkKTkIwVEKyemIzYSSyAtZ6uN_r99P2SKlYCGnsiyRihnjj_3w0_lm7bOn0Id-fZ0tsyoOKfEmJBc2XejruM9edvHb78_YSVt3yS_-dM7ebm9eq3u-er57qJYr7qRWW45WqAZ0W6OwrbJCYKEcQQ0oCqpbqsG7MndFjo13jdVIjjRZ5YS1GgDknF0cejdx-Nr5tDUfwy7246QRlCtJupRyTOEh5aa_0bdmE8Pn-NYgmAmMOYAxIxgzgTEkfwFEIlRi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647368933</pqid></control><display><type>article</type><title>Knowledge Mining: A Cross-disciplinary Survey</title><source>Springer Nature</source><source>Alma/SFX Local Collection</source><creator>Rui, Yong ; Carmona, Vicente Ivan Sanchez ; Pourvali, Mohsen ; Xing, Yun ; Yi, Wei-Wen ; Ruan, Hui-Bin ; Zhang, Yu</creator><creatorcontrib>Rui, Yong ; Carmona, Vicente Ivan Sanchez ; Pourvali, Mohsen ; Xing, Yun ; Yi, Wei-Wen ; Ruan, Hui-Bin ; Zhang, Yu</creatorcontrib><description>Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey.</description><identifier>ISSN: 2731-538X</identifier><identifier>ISSN: 1476-8186</identifier><identifier>EISSN: 2731-5398</identifier><identifier>EISSN: 1751-8520</identifier><identifier>DOI: 10.1007/s11633-022-1323-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Data mining ; Interdisciplinary aspects ; Machine learning ; Natural language processing</subject><ispartof>International journal of automation and computing, 2022-04, Vol.19 (2), p.89-114</ispartof><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003</citedby><cites>FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003</cites><orcidid>0000-0003-2653-9613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rui, Yong</creatorcontrib><creatorcontrib>Carmona, Vicente Ivan Sanchez</creatorcontrib><creatorcontrib>Pourvali, Mohsen</creatorcontrib><creatorcontrib>Xing, Yun</creatorcontrib><creatorcontrib>Yi, Wei-Wen</creatorcontrib><creatorcontrib>Ruan, Hui-Bin</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><title>Knowledge Mining: A Cross-disciplinary Survey</title><title>International journal of automation and computing</title><description>Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey.</description><subject>Data mining</subject><subject>Interdisciplinary aspects</subject><subject>Machine learning</subject><subject>Natural language processing</subject><issn>2731-538X</issn><issn>1476-8186</issn><issn>2731-5398</issn><issn>1751-8520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAUxIMouKz7AbwVPEffS9qX1NtS_IcrHlTwFpo0XSK1XZNdZb-9LSueZg7DzPBj7BzhEgHUVUIkKTkIwVEKyemIzYSSyAtZ6uN_r99P2SKlYCGnsiyRihnjj_3w0_lm7bOn0Id-fZ0tsyoOKfEmJBc2XejruM9edvHb78_YSVt3yS_-dM7ebm9eq3u-er57qJYr7qRWW45WqAZ0W6OwrbJCYKEcQQ0oCqpbqsG7MndFjo13jdVIjjRZ5YS1GgDknF0cejdx-Nr5tDUfwy7246QRlCtJupRyTOEh5aa_0bdmE8Pn-NYgmAmMOYAxIxgzgTEkfwFEIlRi</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Rui, Yong</creator><creator>Carmona, Vicente Ivan Sanchez</creator><creator>Pourvali, Mohsen</creator><creator>Xing, Yun</creator><creator>Yi, Wei-Wen</creator><creator>Ruan, Hui-Bin</creator><creator>Zhang, Yu</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2653-9613</orcidid></search><sort><creationdate>20220401</creationdate><title>Knowledge Mining: A Cross-disciplinary Survey</title><author>Rui, Yong ; Carmona, Vicente Ivan Sanchez ; Pourvali, Mohsen ; Xing, Yun ; Yi, Wei-Wen ; Ruan, Hui-Bin ; Zhang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data mining</topic><topic>Interdisciplinary aspects</topic><topic>Machine learning</topic><topic>Natural language processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui, Yong</creatorcontrib><creatorcontrib>Carmona, Vicente Ivan Sanchez</creatorcontrib><creatorcontrib>Pourvali, Mohsen</creatorcontrib><creatorcontrib>Xing, Yun</creatorcontrib><creatorcontrib>Yi, Wei-Wen</creatorcontrib><creatorcontrib>Ruan, Hui-Bin</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui, Yong</au><au>Carmona, Vicente Ivan Sanchez</au><au>Pourvali, Mohsen</au><au>Xing, Yun</au><au>Yi, Wei-Wen</au><au>Ruan, Hui-Bin</au><au>Zhang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge Mining: A Cross-disciplinary Survey</atitle><jtitle>International journal of automation and computing</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>19</volume><issue>2</issue><spage>89</spage><epage>114</epage><pages>89-114</pages><issn>2731-538X</issn><issn>1476-8186</issn><eissn>2731-5398</eissn><eissn>1751-8520</eissn><abstract>Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11633-022-1323-6</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2653-9613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2731-538X
ispartof International journal of automation and computing, 2022-04, Vol.19 (2), p.89-114
issn 2731-538X
1476-8186
2731-5398
1751-8520
language eng
recordid cdi_proquest_journals_2647368933
source Springer Nature; Alma/SFX Local Collection
subjects Data mining
Interdisciplinary aspects
Machine learning
Natural language processing
title Knowledge Mining: A Cross-disciplinary Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20Mining:%20A%20Cross-disciplinary%20Survey&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Rui,%20Yong&rft.date=2022-04-01&rft.volume=19&rft.issue=2&rft.spage=89&rft.epage=114&rft.pages=89-114&rft.issn=2731-538X&rft.eissn=2731-5398&rft_id=info:doi/10.1007/s11633-022-1323-6&rft_dat=%3Cproquest_cross%3E2647368933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647368933&rft_id=info:pmid/&rfr_iscdi=true