Loading…
Knowledge Mining: A Cross-disciplinary Survey
Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better under...
Saved in:
Published in: | International journal of automation and computing 2022-04, Vol.19 (2), p.89-114 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003 |
container_end_page | 114 |
container_issue | 2 |
container_start_page | 89 |
container_title | International journal of automation and computing |
container_volume | 19 |
creator | Rui, Yong Carmona, Vicente Ivan Sanchez Pourvali, Mohsen Xing, Yun Yi, Wei-Wen Ruan, Hui-Bin Zhang, Yu |
description | Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey. |
doi_str_mv | 10.1007/s11633-022-1323-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647368933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647368933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003</originalsourceid><addsrcrecordid>eNo9kE9LxDAUxIMouKz7AbwVPEffS9qX1NtS_IcrHlTwFpo0XSK1XZNdZb-9LSueZg7DzPBj7BzhEgHUVUIkKTkIwVEKyemIzYSSyAtZ6uN_r99P2SKlYCGnsiyRihnjj_3w0_lm7bOn0Id-fZ0tsyoOKfEmJBc2XejruM9edvHb78_YSVt3yS_-dM7ebm9eq3u-er57qJYr7qRWW45WqAZ0W6OwrbJCYKEcQQ0oCqpbqsG7MndFjo13jdVIjjRZ5YS1GgDknF0cejdx-Nr5tDUfwy7246QRlCtJupRyTOEh5aa_0bdmE8Pn-NYgmAmMOYAxIxgzgTEkfwFEIlRi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647368933</pqid></control><display><type>article</type><title>Knowledge Mining: A Cross-disciplinary Survey</title><source>Springer Nature</source><source>Alma/SFX Local Collection</source><creator>Rui, Yong ; Carmona, Vicente Ivan Sanchez ; Pourvali, Mohsen ; Xing, Yun ; Yi, Wei-Wen ; Ruan, Hui-Bin ; Zhang, Yu</creator><creatorcontrib>Rui, Yong ; Carmona, Vicente Ivan Sanchez ; Pourvali, Mohsen ; Xing, Yun ; Yi, Wei-Wen ; Ruan, Hui-Bin ; Zhang, Yu</creatorcontrib><description>Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey.</description><identifier>ISSN: 2731-538X</identifier><identifier>ISSN: 1476-8186</identifier><identifier>EISSN: 2731-5398</identifier><identifier>EISSN: 1751-8520</identifier><identifier>DOI: 10.1007/s11633-022-1323-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Data mining ; Interdisciplinary aspects ; Machine learning ; Natural language processing</subject><ispartof>International journal of automation and computing, 2022-04, Vol.19 (2), p.89-114</ispartof><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003</citedby><cites>FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003</cites><orcidid>0000-0003-2653-9613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rui, Yong</creatorcontrib><creatorcontrib>Carmona, Vicente Ivan Sanchez</creatorcontrib><creatorcontrib>Pourvali, Mohsen</creatorcontrib><creatorcontrib>Xing, Yun</creatorcontrib><creatorcontrib>Yi, Wei-Wen</creatorcontrib><creatorcontrib>Ruan, Hui-Bin</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><title>Knowledge Mining: A Cross-disciplinary Survey</title><title>International journal of automation and computing</title><description>Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey.</description><subject>Data mining</subject><subject>Interdisciplinary aspects</subject><subject>Machine learning</subject><subject>Natural language processing</subject><issn>2731-538X</issn><issn>1476-8186</issn><issn>2731-5398</issn><issn>1751-8520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAUxIMouKz7AbwVPEffS9qX1NtS_IcrHlTwFpo0XSK1XZNdZb-9LSueZg7DzPBj7BzhEgHUVUIkKTkIwVEKyemIzYSSyAtZ6uN_r99P2SKlYCGnsiyRihnjj_3w0_lm7bOn0Id-fZ0tsyoOKfEmJBc2XejruM9edvHb78_YSVt3yS_-dM7ebm9eq3u-er57qJYr7qRWW45WqAZ0W6OwrbJCYKEcQQ0oCqpbqsG7MndFjo13jdVIjjRZ5YS1GgDknF0cejdx-Nr5tDUfwy7246QRlCtJupRyTOEh5aa_0bdmE8Pn-NYgmAmMOYAxIxgzgTEkfwFEIlRi</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Rui, Yong</creator><creator>Carmona, Vicente Ivan Sanchez</creator><creator>Pourvali, Mohsen</creator><creator>Xing, Yun</creator><creator>Yi, Wei-Wen</creator><creator>Ruan, Hui-Bin</creator><creator>Zhang, Yu</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2653-9613</orcidid></search><sort><creationdate>20220401</creationdate><title>Knowledge Mining: A Cross-disciplinary Survey</title><author>Rui, Yong ; Carmona, Vicente Ivan Sanchez ; Pourvali, Mohsen ; Xing, Yun ; Yi, Wei-Wen ; Ruan, Hui-Bin ; Zhang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data mining</topic><topic>Interdisciplinary aspects</topic><topic>Machine learning</topic><topic>Natural language processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui, Yong</creatorcontrib><creatorcontrib>Carmona, Vicente Ivan Sanchez</creatorcontrib><creatorcontrib>Pourvali, Mohsen</creatorcontrib><creatorcontrib>Xing, Yun</creatorcontrib><creatorcontrib>Yi, Wei-Wen</creatorcontrib><creatorcontrib>Ruan, Hui-Bin</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui, Yong</au><au>Carmona, Vicente Ivan Sanchez</au><au>Pourvali, Mohsen</au><au>Xing, Yun</au><au>Yi, Wei-Wen</au><au>Ruan, Hui-Bin</au><au>Zhang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge Mining: A Cross-disciplinary Survey</atitle><jtitle>International journal of automation and computing</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>19</volume><issue>2</issue><spage>89</spage><epage>114</epage><pages>89-114</pages><issn>2731-538X</issn><issn>1476-8186</issn><eissn>2731-5398</eissn><eissn>1751-8520</eissn><abstract>Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11633-022-1323-6</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2653-9613</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-538X |
ispartof | International journal of automation and computing, 2022-04, Vol.19 (2), p.89-114 |
issn | 2731-538X 1476-8186 2731-5398 1751-8520 |
language | eng |
recordid | cdi_proquest_journals_2647368933 |
source | Springer Nature; Alma/SFX Local Collection |
subjects | Data mining Interdisciplinary aspects Machine learning Natural language processing |
title | Knowledge Mining: A Cross-disciplinary Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20Mining:%20A%20Cross-disciplinary%20Survey&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Rui,%20Yong&rft.date=2022-04-01&rft.volume=19&rft.issue=2&rft.spage=89&rft.epage=114&rft.pages=89-114&rft.issn=2731-538X&rft.eissn=2731-5398&rft_id=info:doi/10.1007/s11633-022-1323-6&rft_dat=%3Cproquest_cross%3E2647368933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-1b27d08fa12bf7b22157c60a01256af6a0ec94c541decdb816c686b7c2bb80003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647368933&rft_id=info:pmid/&rfr_iscdi=true |