Loading…

A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining

The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2022-06, Vol.195, p.116602, Article 116602
Main Authors: Fonseca-Galindo, Juan Camilo, de Castro Surita, Gabriela, Neto, José Maia, de Castro, Cristiano Leite, Lemos, André Paim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023
cites cdi_FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023
container_end_page
container_issue
container_start_page 116602
container_title Expert systems with applications
container_volume 195
creator Fonseca-Galindo, Juan Camilo
de Castro Surita, Gabriela
Neto, José Maia
de Castro, Cristiano Leite
Lemos, André Paim
description The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory data mining techniques to extract territorial patterns and use them to solve the Dynamic Capacitated Vehicle Routing Problem with Stochastic Customers. Our solution approach is focused on a linear-time heuristic that depends only on the Warehouse system configurations and not on the total number of packages processed, which is suitable for express delivery logistics companies that must process a large number of packages per day. We compare our proposal with benchmark algorithms from the literature; additionally, we evaluate its performance and robustness under different scenarios. Results show that our solution approach is effective for scenarios in which routes must be set dynamically from a continuous stream of packages. •Trajectory data mining can improve last-mile routes.•Stochastic and dynamic VRP solutions make cross-docking operations more efficient.•Multi-agent systems allow efficiently implementing the dynamic VRP in warehouse systems.
doi_str_mv 10.1016/j.eswa.2022.116602
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647396625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422000951</els_id><sourcerecordid>2647396625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhiMEEkvhBThZ4pzFHju2I3GpFgpIlagqytVynXHXURIvttNqn4DXrpflzGk0o__7Z-ZvmveMbhll8uO4xfxkt0ABtoxJSeFFs2Fa8Vaqnr9sNrTvVCuYEq-bNzmPlDJFqdo0fy7JvE4ltPYBl0LyMReciY-J5Dg9huWBlD2Sz8fFzsGRnT1YF4otOJBfuA9uQnIb13LS3aR4P1X2KZQ9ySW6vc2lMm6tzYwpkzX_9Ut2RFdiOpLBFkvmsNTx2-aVt1PGd__qRXN39eXn7lt7_ePr993ldes46NJ2HXODVlrq3qEQgksvrAa85-AFKIBOaATNexSeaxiASiWEdd57gJ4Cv2g-nH0PKf5eMRczxjUtdaUBKRTvpYSuquCscinmnNCbQwqzTUfDqDkFbkZzCtycAjfnwCv06Qxhvf8xYDLZBVwcDiHVh80Qw__wZ_2Diw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647396625</pqid></control><display><type>article</type><title>A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Fonseca-Galindo, Juan Camilo ; de Castro Surita, Gabriela ; Neto, José Maia ; de Castro, Cristiano Leite ; Lemos, André Paim</creator><creatorcontrib>Fonseca-Galindo, Juan Camilo ; de Castro Surita, Gabriela ; Neto, José Maia ; de Castro, Cristiano Leite ; Lemos, André Paim</creatorcontrib><description>The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory data mining techniques to extract territorial patterns and use them to solve the Dynamic Capacitated Vehicle Routing Problem with Stochastic Customers. Our solution approach is focused on a linear-time heuristic that depends only on the Warehouse system configurations and not on the total number of packages processed, which is suitable for express delivery logistics companies that must process a large number of packages per day. We compare our proposal with benchmark algorithms from the literature; additionally, we evaluate its performance and robustness under different scenarios. Results show that our solution approach is effective for scenarios in which routes must be set dynamically from a continuous stream of packages. •Trajectory data mining can improve last-mile routes.•Stochastic and dynamic VRP solutions make cross-docking operations more efficient.•Multi-agent systems allow efficiently implementing the dynamic VRP in warehouse systems.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.116602</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Big Data ; Customers ; Data mining ; Dynamic Capacitated Vehicle Routing Problem with stochastic customers ; E-commerce logistics ; Heuristic ; Logistics ; Multi-agent systems ; Multiagent systems ; Packages ; Route planning ; Vehicle routing</subject><ispartof>Expert systems with applications, 2022-06, Vol.195, p.116602, Article 116602</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Jun 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023</citedby><cites>FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023</cites><orcidid>0000-0001-5598-2783 ; 0000-0003-3028-8597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fonseca-Galindo, Juan Camilo</creatorcontrib><creatorcontrib>de Castro Surita, Gabriela</creatorcontrib><creatorcontrib>Neto, José Maia</creatorcontrib><creatorcontrib>de Castro, Cristiano Leite</creatorcontrib><creatorcontrib>Lemos, André Paim</creatorcontrib><title>A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining</title><title>Expert systems with applications</title><description>The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory data mining techniques to extract territorial patterns and use them to solve the Dynamic Capacitated Vehicle Routing Problem with Stochastic Customers. Our solution approach is focused on a linear-time heuristic that depends only on the Warehouse system configurations and not on the total number of packages processed, which is suitable for express delivery logistics companies that must process a large number of packages per day. We compare our proposal with benchmark algorithms from the literature; additionally, we evaluate its performance and robustness under different scenarios. Results show that our solution approach is effective for scenarios in which routes must be set dynamically from a continuous stream of packages. •Trajectory data mining can improve last-mile routes.•Stochastic and dynamic VRP solutions make cross-docking operations more efficient.•Multi-agent systems allow efficiently implementing the dynamic VRP in warehouse systems.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Customers</subject><subject>Data mining</subject><subject>Dynamic Capacitated Vehicle Routing Problem with stochastic customers</subject><subject>E-commerce logistics</subject><subject>Heuristic</subject><subject>Logistics</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Packages</subject><subject>Route planning</subject><subject>Vehicle routing</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhiMEEkvhBThZ4pzFHju2I3GpFgpIlagqytVynXHXURIvttNqn4DXrpflzGk0o__7Z-ZvmveMbhll8uO4xfxkt0ABtoxJSeFFs2Fa8Vaqnr9sNrTvVCuYEq-bNzmPlDJFqdo0fy7JvE4ltPYBl0LyMReciY-J5Dg9huWBlD2Sz8fFzsGRnT1YF4otOJBfuA9uQnIb13LS3aR4P1X2KZQ9ySW6vc2lMm6tzYwpkzX_9Ut2RFdiOpLBFkvmsNTx2-aVt1PGd__qRXN39eXn7lt7_ePr993ldes46NJ2HXODVlrq3qEQgksvrAa85-AFKIBOaATNexSeaxiASiWEdd57gJ4Cv2g-nH0PKf5eMRczxjUtdaUBKRTvpYSuquCscinmnNCbQwqzTUfDqDkFbkZzCtycAjfnwCv06Qxhvf8xYDLZBVwcDiHVh80Qw__wZ_2Diw4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Fonseca-Galindo, Juan Camilo</creator><creator>de Castro Surita, Gabriela</creator><creator>Neto, José Maia</creator><creator>de Castro, Cristiano Leite</creator><creator>Lemos, André Paim</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5598-2783</orcidid><orcidid>https://orcid.org/0000-0003-3028-8597</orcidid></search><sort><creationdate>20220601</creationdate><title>A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining</title><author>Fonseca-Galindo, Juan Camilo ; de Castro Surita, Gabriela ; Neto, José Maia ; de Castro, Cristiano Leite ; Lemos, André Paim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Customers</topic><topic>Data mining</topic><topic>Dynamic Capacitated Vehicle Routing Problem with stochastic customers</topic><topic>E-commerce logistics</topic><topic>Heuristic</topic><topic>Logistics</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Packages</topic><topic>Route planning</topic><topic>Vehicle routing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonseca-Galindo, Juan Camilo</creatorcontrib><creatorcontrib>de Castro Surita, Gabriela</creatorcontrib><creatorcontrib>Neto, José Maia</creatorcontrib><creatorcontrib>de Castro, Cristiano Leite</creatorcontrib><creatorcontrib>Lemos, André Paim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonseca-Galindo, Juan Camilo</au><au>de Castro Surita, Gabriela</au><au>Neto, José Maia</au><au>de Castro, Cristiano Leite</au><au>Lemos, André Paim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining</atitle><jtitle>Expert systems with applications</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>195</volume><spage>116602</spage><pages>116602-</pages><artnum>116602</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory data mining techniques to extract territorial patterns and use them to solve the Dynamic Capacitated Vehicle Routing Problem with Stochastic Customers. Our solution approach is focused on a linear-time heuristic that depends only on the Warehouse system configurations and not on the total number of packages processed, which is suitable for express delivery logistics companies that must process a large number of packages per day. We compare our proposal with benchmark algorithms from the literature; additionally, we evaluate its performance and robustness under different scenarios. Results show that our solution approach is effective for scenarios in which routes must be set dynamically from a continuous stream of packages. •Trajectory data mining can improve last-mile routes.•Stochastic and dynamic VRP solutions make cross-docking operations more efficient.•Multi-agent systems allow efficiently implementing the dynamic VRP in warehouse systems.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.116602</doi><orcidid>https://orcid.org/0000-0001-5598-2783</orcidid><orcidid>https://orcid.org/0000-0003-3028-8597</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2022-06, Vol.195, p.116602, Article 116602
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2647396625
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithms
Big Data
Customers
Data mining
Dynamic Capacitated Vehicle Routing Problem with stochastic customers
E-commerce logistics
Heuristic
Logistics
Multi-agent systems
Multiagent systems
Packages
Route planning
Vehicle routing
title A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-agent%20system%20for%20solving%20the%20Dynamic%20Capacitated%20Vehicle%20Routing%20Problem%20with%20stochastic%20customers%20using%20trajectory%20data%20mining&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Fonseca-Galindo,%20Juan%20Camilo&rft.date=2022-06-01&rft.volume=195&rft.spage=116602&rft.pages=116602-&rft.artnum=116602&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.116602&rft_dat=%3Cproquest_cross%3E2647396625%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647396625&rft_id=info:pmid/&rfr_iscdi=true