Loading…
A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining
The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory...
Saved in:
Published in: | Expert systems with applications 2022-06, Vol.195, p.116602, Article 116602 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023 |
container_end_page | |
container_issue | |
container_start_page | 116602 |
container_title | Expert systems with applications |
container_volume | 195 |
creator | Fonseca-Galindo, Juan Camilo de Castro Surita, Gabriela Neto, José Maia de Castro, Cristiano Leite Lemos, André Paim |
description | The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory data mining techniques to extract territorial patterns and use them to solve the Dynamic Capacitated Vehicle Routing Problem with Stochastic Customers. Our solution approach is focused on a linear-time heuristic that depends only on the Warehouse system configurations and not on the total number of packages processed, which is suitable for express delivery logistics companies that must process a large number of packages per day. We compare our proposal with benchmark algorithms from the literature; additionally, we evaluate its performance and robustness under different scenarios. Results show that our solution approach is effective for scenarios in which routes must be set dynamically from a continuous stream of packages.
•Trajectory data mining can improve last-mile routes.•Stochastic and dynamic VRP solutions make cross-docking operations more efficient.•Multi-agent systems allow efficiently implementing the dynamic VRP in warehouse systems. |
doi_str_mv | 10.1016/j.eswa.2022.116602 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647396625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422000951</els_id><sourcerecordid>2647396625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhiMEEkvhBThZ4pzFHju2I3GpFgpIlagqytVynXHXURIvttNqn4DXrpflzGk0o__7Z-ZvmveMbhll8uO4xfxkt0ABtoxJSeFFs2Fa8Vaqnr9sNrTvVCuYEq-bNzmPlDJFqdo0fy7JvE4ltPYBl0LyMReciY-J5Dg9huWBlD2Sz8fFzsGRnT1YF4otOJBfuA9uQnIb13LS3aR4P1X2KZQ9ySW6vc2lMm6tzYwpkzX_9Ut2RFdiOpLBFkvmsNTx2-aVt1PGd__qRXN39eXn7lt7_ePr993ldes46NJ2HXODVlrq3qEQgksvrAa85-AFKIBOaATNexSeaxiASiWEdd57gJ4Cv2g-nH0PKf5eMRczxjUtdaUBKRTvpYSuquCscinmnNCbQwqzTUfDqDkFbkZzCtycAjfnwCv06Qxhvf8xYDLZBVwcDiHVh80Qw__wZ_2Diw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647396625</pqid></control><display><type>article</type><title>A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Fonseca-Galindo, Juan Camilo ; de Castro Surita, Gabriela ; Neto, José Maia ; de Castro, Cristiano Leite ; Lemos, André Paim</creator><creatorcontrib>Fonseca-Galindo, Juan Camilo ; de Castro Surita, Gabriela ; Neto, José Maia ; de Castro, Cristiano Leite ; Lemos, André Paim</creatorcontrib><description>The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory data mining techniques to extract territorial patterns and use them to solve the Dynamic Capacitated Vehicle Routing Problem with Stochastic Customers. Our solution approach is focused on a linear-time heuristic that depends only on the Warehouse system configurations and not on the total number of packages processed, which is suitable for express delivery logistics companies that must process a large number of packages per day. We compare our proposal with benchmark algorithms from the literature; additionally, we evaluate its performance and robustness under different scenarios. Results show that our solution approach is effective for scenarios in which routes must be set dynamically from a continuous stream of packages.
•Trajectory data mining can improve last-mile routes.•Stochastic and dynamic VRP solutions make cross-docking operations more efficient.•Multi-agent systems allow efficiently implementing the dynamic VRP in warehouse systems.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.116602</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Big Data ; Customers ; Data mining ; Dynamic Capacitated Vehicle Routing Problem with stochastic customers ; E-commerce logistics ; Heuristic ; Logistics ; Multi-agent systems ; Multiagent systems ; Packages ; Route planning ; Vehicle routing</subject><ispartof>Expert systems with applications, 2022-06, Vol.195, p.116602, Article 116602</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Jun 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023</citedby><cites>FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023</cites><orcidid>0000-0001-5598-2783 ; 0000-0003-3028-8597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fonseca-Galindo, Juan Camilo</creatorcontrib><creatorcontrib>de Castro Surita, Gabriela</creatorcontrib><creatorcontrib>Neto, José Maia</creatorcontrib><creatorcontrib>de Castro, Cristiano Leite</creatorcontrib><creatorcontrib>Lemos, André Paim</creatorcontrib><title>A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining</title><title>Expert systems with applications</title><description>The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory data mining techniques to extract territorial patterns and use them to solve the Dynamic Capacitated Vehicle Routing Problem with Stochastic Customers. Our solution approach is focused on a linear-time heuristic that depends only on the Warehouse system configurations and not on the total number of packages processed, which is suitable for express delivery logistics companies that must process a large number of packages per day. We compare our proposal with benchmark algorithms from the literature; additionally, we evaluate its performance and robustness under different scenarios. Results show that our solution approach is effective for scenarios in which routes must be set dynamically from a continuous stream of packages.
•Trajectory data mining can improve last-mile routes.•Stochastic and dynamic VRP solutions make cross-docking operations more efficient.•Multi-agent systems allow efficiently implementing the dynamic VRP in warehouse systems.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Customers</subject><subject>Data mining</subject><subject>Dynamic Capacitated Vehicle Routing Problem with stochastic customers</subject><subject>E-commerce logistics</subject><subject>Heuristic</subject><subject>Logistics</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Packages</subject><subject>Route planning</subject><subject>Vehicle routing</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhiMEEkvhBThZ4pzFHju2I3GpFgpIlagqytVynXHXURIvttNqn4DXrpflzGk0o__7Z-ZvmveMbhll8uO4xfxkt0ABtoxJSeFFs2Fa8Vaqnr9sNrTvVCuYEq-bNzmPlDJFqdo0fy7JvE4ltPYBl0LyMReciY-J5Dg9huWBlD2Sz8fFzsGRnT1YF4otOJBfuA9uQnIb13LS3aR4P1X2KZQ9ySW6vc2lMm6tzYwpkzX_9Ut2RFdiOpLBFkvmsNTx2-aVt1PGd__qRXN39eXn7lt7_ePr993ldes46NJ2HXODVlrq3qEQgksvrAa85-AFKIBOaATNexSeaxiASiWEdd57gJ4Cv2g-nH0PKf5eMRczxjUtdaUBKRTvpYSuquCscinmnNCbQwqzTUfDqDkFbkZzCtycAjfnwCv06Qxhvf8xYDLZBVwcDiHVh80Qw__wZ_2Diw4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Fonseca-Galindo, Juan Camilo</creator><creator>de Castro Surita, Gabriela</creator><creator>Neto, José Maia</creator><creator>de Castro, Cristiano Leite</creator><creator>Lemos, André Paim</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5598-2783</orcidid><orcidid>https://orcid.org/0000-0003-3028-8597</orcidid></search><sort><creationdate>20220601</creationdate><title>A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining</title><author>Fonseca-Galindo, Juan Camilo ; de Castro Surita, Gabriela ; Neto, José Maia ; de Castro, Cristiano Leite ; Lemos, André Paim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Customers</topic><topic>Data mining</topic><topic>Dynamic Capacitated Vehicle Routing Problem with stochastic customers</topic><topic>E-commerce logistics</topic><topic>Heuristic</topic><topic>Logistics</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Packages</topic><topic>Route planning</topic><topic>Vehicle routing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonseca-Galindo, Juan Camilo</creatorcontrib><creatorcontrib>de Castro Surita, Gabriela</creatorcontrib><creatorcontrib>Neto, José Maia</creatorcontrib><creatorcontrib>de Castro, Cristiano Leite</creatorcontrib><creatorcontrib>Lemos, André Paim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonseca-Galindo, Juan Camilo</au><au>de Castro Surita, Gabriela</au><au>Neto, José Maia</au><au>de Castro, Cristiano Leite</au><au>Lemos, André Paim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining</atitle><jtitle>Expert systems with applications</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>195</volume><spage>116602</spage><pages>116602-</pages><artnum>116602</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>The worldwide growth of e-commerce has created new challenges for logistics companies, such as delivering products quickly and cheaply. This paper presents a heuristic to solve the last-mile route creation problem dynamically. The heuristic is based on a multi-agent system integrated with trajectory data mining techniques to extract territorial patterns and use them to solve the Dynamic Capacitated Vehicle Routing Problem with Stochastic Customers. Our solution approach is focused on a linear-time heuristic that depends only on the Warehouse system configurations and not on the total number of packages processed, which is suitable for express delivery logistics companies that must process a large number of packages per day. We compare our proposal with benchmark algorithms from the literature; additionally, we evaluate its performance and robustness under different scenarios. Results show that our solution approach is effective for scenarios in which routes must be set dynamically from a continuous stream of packages.
•Trajectory data mining can improve last-mile routes.•Stochastic and dynamic VRP solutions make cross-docking operations more efficient.•Multi-agent systems allow efficiently implementing the dynamic VRP in warehouse systems.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.116602</doi><orcidid>https://orcid.org/0000-0001-5598-2783</orcidid><orcidid>https://orcid.org/0000-0003-3028-8597</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2022-06, Vol.195, p.116602, Article 116602 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2647396625 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithms Big Data Customers Data mining Dynamic Capacitated Vehicle Routing Problem with stochastic customers E-commerce logistics Heuristic Logistics Multi-agent systems Multiagent systems Packages Route planning Vehicle routing |
title | A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-agent%20system%20for%20solving%20the%20Dynamic%20Capacitated%20Vehicle%20Routing%20Problem%20with%20stochastic%20customers%20using%20trajectory%20data%20mining&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Fonseca-Galindo,%20Juan%20Camilo&rft.date=2022-06-01&rft.volume=195&rft.spage=116602&rft.pages=116602-&rft.artnum=116602&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.116602&rft_dat=%3Cproquest_cross%3E2647396625%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-551cd878689ce44436f4a82eb32f42722548e2839e4f382d206744acfff229023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647396625&rft_id=info:pmid/&rfr_iscdi=true |