Loading…
Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits
[Display omitted] •Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties. Conductive polymeric nanocomposites have made significant contributio...
Saved in:
Published in: | European polymer journal 2022-03, Vol.167, p.111068, Article 111068 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33 |
container_end_page | |
container_issue | |
container_start_page | 111068 |
container_title | European polymer journal |
container_volume | 167 |
creator | Farzan, Afsoon Borandeh, Sedigheh Seppälä, Jukka |
description | [Display omitted]
•Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties.
Conductive polymeric nanocomposites have made significant contributions in nerve regeneration. To this aim, the best results are obtained by using nerve guidance conduits (NGCs) with conductive, bio-compatible, bio-degradable tubes as well as special topographical features. In this study, biodegradable, conductive, solvent-free polyurethane/PEGylated graphene oxide (PU/PEG-GO) composites were synthesized and successfully 3D printed into flexible nerve conduits with different precise geometries, such as hollow, porous, and grooved tubes, using stereolithography. The composite containing 5% PEG-GO showed the highest tensile stress (3.51 ± 0.54 MPa), tensile strain at break (∼170%), and conductivity (1.1 × 10−3 S/cm) with the lowest contact angle of 72° attributing to the strong interfacial interactions between PEG-GO nanosheets and the PU matrix. Moreover, the PU/PEG-GO 5% exhibited higher compression strength compared with pure PU and showed appropriate enzymatic degradation after 6 weeks, which is expected to last sufficiently for an efficient nerve regeneration. Altogether the 3D-printed, conductive, biodegradable, and flexible PU/PEG-GO 5% conduit with precise geometry has potential as NGCs for peripheral nerve regeneration. |
doi_str_mv | 10.1016/j.eurpolymj.2022.111068 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647396751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305722000726</els_id><sourcerecordid>2647396751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqXwDERiTuqzE7sZqwIFqRIMMFupfWkdtXGwk4q-PY6KWJlu-f_v7j5C7oFmQEHMmgwH37n96dBkjDKWAQAV8wsygbnkKZR5cUkmlEKeclrIa3ITQkMplVzwCamWrjWD7u0RkxEyeOx3VYuz96fVaV_1aJKtr7odtpi4b2sw0e7QuWB7TGrnE_6Ydt62Y65FHyHbwZqq1WMugm0fbslVXe0D3v3OKfl8fvpYvqTrt9XrcrFONS9Zn5a62Eip9cYICXkOc2TAtAGOrGZ5CXJTaCMYmEJKU4ucCl7kiFwyXVTGcD4lD2du593XgKFXjRt8G1cqJnLJSyELiCl5TmnvQvBYq3j-ofInBVSNPlWj_nyq0ac6-4zNxbmJ8YmjRa-Cthg_Ndaj7pVx9l_GD9GChD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647396751</pqid></control><display><type>article</type><title>Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits</title><source>ScienceDirect Journals</source><creator>Farzan, Afsoon ; Borandeh, Sedigheh ; Seppälä, Jukka</creator><creatorcontrib>Farzan, Afsoon ; Borandeh, Sedigheh ; Seppälä, Jukka</creatorcontrib><description>[Display omitted]
•Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties.
Conductive polymeric nanocomposites have made significant contributions in nerve regeneration. To this aim, the best results are obtained by using nerve guidance conduits (NGCs) with conductive, bio-compatible, bio-degradable tubes as well as special topographical features. In this study, biodegradable, conductive, solvent-free polyurethane/PEGylated graphene oxide (PU/PEG-GO) composites were synthesized and successfully 3D printed into flexible nerve conduits with different precise geometries, such as hollow, porous, and grooved tubes, using stereolithography. The composite containing 5% PEG-GO showed the highest tensile stress (3.51 ± 0.54 MPa), tensile strain at break (∼170%), and conductivity (1.1 × 10−3 S/cm) with the lowest contact angle of 72° attributing to the strong interfacial interactions between PEG-GO nanosheets and the PU matrix. Moreover, the PU/PEG-GO 5% exhibited higher compression strength compared with pure PU and showed appropriate enzymatic degradation after 6 weeks, which is expected to last sufficiently for an efficient nerve regeneration. Altogether the 3D-printed, conductive, biodegradable, and flexible PU/PEG-GO 5% conduit with precise geometry has potential as NGCs for peripheral nerve regeneration.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2022.111068</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D printing ; Biodegradability ; Compressive strength ; Contact angle ; Graphene ; Graphene oxide ; Lithography ; Nanocomposites ; Nerve guides ; Nerve regeneration ; Peripheral nerves ; Polyurethane ; Polyurethane resins ; Regeneration ; Solvent-free polyurethane ; Stereolithography ; Tensile strain ; Tensile strength ; Tensile stress ; Three dimensional composites ; Three dimensional printing ; Tubes</subject><ispartof>European polymer journal, 2022-03, Vol.167, p.111068, Article 111068</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33</citedby><cites>FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Farzan, Afsoon</creatorcontrib><creatorcontrib>Borandeh, Sedigheh</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><title>Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits</title><title>European polymer journal</title><description>[Display omitted]
•Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties.
Conductive polymeric nanocomposites have made significant contributions in nerve regeneration. To this aim, the best results are obtained by using nerve guidance conduits (NGCs) with conductive, bio-compatible, bio-degradable tubes as well as special topographical features. In this study, biodegradable, conductive, solvent-free polyurethane/PEGylated graphene oxide (PU/PEG-GO) composites were synthesized and successfully 3D printed into flexible nerve conduits with different precise geometries, such as hollow, porous, and grooved tubes, using stereolithography. The composite containing 5% PEG-GO showed the highest tensile stress (3.51 ± 0.54 MPa), tensile strain at break (∼170%), and conductivity (1.1 × 10−3 S/cm) with the lowest contact angle of 72° attributing to the strong interfacial interactions between PEG-GO nanosheets and the PU matrix. Moreover, the PU/PEG-GO 5% exhibited higher compression strength compared with pure PU and showed appropriate enzymatic degradation after 6 weeks, which is expected to last sufficiently for an efficient nerve regeneration. Altogether the 3D-printed, conductive, biodegradable, and flexible PU/PEG-GO 5% conduit with precise geometry has potential as NGCs for peripheral nerve regeneration.</description><subject>3D printing</subject><subject>Biodegradability</subject><subject>Compressive strength</subject><subject>Contact angle</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Lithography</subject><subject>Nanocomposites</subject><subject>Nerve guides</subject><subject>Nerve regeneration</subject><subject>Peripheral nerves</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Regeneration</subject><subject>Solvent-free polyurethane</subject><subject>Stereolithography</subject><subject>Tensile strain</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Tubes</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqXwDERiTuqzE7sZqwIFqRIMMFupfWkdtXGwk4q-PY6KWJlu-f_v7j5C7oFmQEHMmgwH37n96dBkjDKWAQAV8wsygbnkKZR5cUkmlEKeclrIa3ITQkMplVzwCamWrjWD7u0RkxEyeOx3VYuz96fVaV_1aJKtr7odtpi4b2sw0e7QuWB7TGrnE_6Ydt62Y65FHyHbwZqq1WMugm0fbslVXe0D3v3OKfl8fvpYvqTrt9XrcrFONS9Zn5a62Eip9cYICXkOc2TAtAGOrGZ5CXJTaCMYmEJKU4ucCl7kiFwyXVTGcD4lD2du593XgKFXjRt8G1cqJnLJSyELiCl5TmnvQvBYq3j-ofInBVSNPlWj_nyq0ac6-4zNxbmJ8YmjRa-Cthg_Ndaj7pVx9l_GD9GChD4</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Farzan, Afsoon</creator><creator>Borandeh, Sedigheh</creator><creator>Seppälä, Jukka</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220315</creationdate><title>Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits</title><author>Farzan, Afsoon ; Borandeh, Sedigheh ; Seppälä, Jukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D printing</topic><topic>Biodegradability</topic><topic>Compressive strength</topic><topic>Contact angle</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Lithography</topic><topic>Nanocomposites</topic><topic>Nerve guides</topic><topic>Nerve regeneration</topic><topic>Peripheral nerves</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Regeneration</topic><topic>Solvent-free polyurethane</topic><topic>Stereolithography</topic><topic>Tensile strain</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farzan, Afsoon</creatorcontrib><creatorcontrib>Borandeh, Sedigheh</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farzan, Afsoon</au><au>Borandeh, Sedigheh</au><au>Seppälä, Jukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits</atitle><jtitle>European polymer journal</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>167</volume><spage>111068</spage><pages>111068-</pages><artnum>111068</artnum><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted]
•Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties.
Conductive polymeric nanocomposites have made significant contributions in nerve regeneration. To this aim, the best results are obtained by using nerve guidance conduits (NGCs) with conductive, bio-compatible, bio-degradable tubes as well as special topographical features. In this study, biodegradable, conductive, solvent-free polyurethane/PEGylated graphene oxide (PU/PEG-GO) composites were synthesized and successfully 3D printed into flexible nerve conduits with different precise geometries, such as hollow, porous, and grooved tubes, using stereolithography. The composite containing 5% PEG-GO showed the highest tensile stress (3.51 ± 0.54 MPa), tensile strain at break (∼170%), and conductivity (1.1 × 10−3 S/cm) with the lowest contact angle of 72° attributing to the strong interfacial interactions between PEG-GO nanosheets and the PU matrix. Moreover, the PU/PEG-GO 5% exhibited higher compression strength compared with pure PU and showed appropriate enzymatic degradation after 6 weeks, which is expected to last sufficiently for an efficient nerve regeneration. Altogether the 3D-printed, conductive, biodegradable, and flexible PU/PEG-GO 5% conduit with precise geometry has potential as NGCs for peripheral nerve regeneration.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2022.111068</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3057 |
ispartof | European polymer journal, 2022-03, Vol.167, p.111068, Article 111068 |
issn | 0014-3057 1873-1945 |
language | eng |
recordid | cdi_proquest_journals_2647396751 |
source | ScienceDirect Journals |
subjects | 3D printing Biodegradability Compressive strength Contact angle Graphene Graphene oxide Lithography Nanocomposites Nerve guides Nerve regeneration Peripheral nerves Polyurethane Polyurethane resins Regeneration Solvent-free polyurethane Stereolithography Tensile strain Tensile strength Tensile stress Three dimensional composites Three dimensional printing Tubes |
title | Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20polyurethane/PEGylated%20graphene%20oxide%20composite%20for%203D-printed%20nerve%20guidance%20conduits&rft.jtitle=European%20polymer%20journal&rft.au=Farzan,%20Afsoon&rft.date=2022-03-15&rft.volume=167&rft.spage=111068&rft.pages=111068-&rft.artnum=111068&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2022.111068&rft_dat=%3Cproquest_cross%3E2647396751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647396751&rft_id=info:pmid/&rfr_iscdi=true |