Loading…

Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits

[Display omitted] •Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties. Conductive polymeric nanocomposites have made significant contributio...

Full description

Saved in:
Bibliographic Details
Published in:European polymer journal 2022-03, Vol.167, p.111068, Article 111068
Main Authors: Farzan, Afsoon, Borandeh, Sedigheh, Seppälä, Jukka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33
cites cdi_FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33
container_end_page
container_issue
container_start_page 111068
container_title European polymer journal
container_volume 167
creator Farzan, Afsoon
Borandeh, Sedigheh
Seppälä, Jukka
description [Display omitted] •Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties. Conductive polymeric nanocomposites have made significant contributions in nerve regeneration. To this aim, the best results are obtained by using nerve guidance conduits (NGCs) with conductive, bio-compatible, bio-degradable tubes as well as special topographical features. In this study, biodegradable, conductive, solvent-free polyurethane/PEGylated graphene oxide (PU/PEG-GO) composites were synthesized and successfully 3D printed into flexible nerve conduits with different precise geometries, such as hollow, porous, and grooved tubes, using stereolithography. The composite containing 5% PEG-GO showed the highest tensile stress (3.51 ± 0.54 MPa), tensile strain at break (∼170%), and conductivity (1.1 × 10−3 S/cm) with the lowest contact angle of 72° attributing to the strong interfacial interactions between PEG-GO nanosheets and the PU matrix. Moreover, the PU/PEG-GO 5% exhibited higher compression strength compared with pure PU and showed appropriate enzymatic degradation after 6 weeks, which is expected to last sufficiently for an efficient nerve regeneration. Altogether the 3D-printed, conductive, biodegradable, and flexible PU/PEG-GO 5% conduit with precise geometry has potential as NGCs for peripheral nerve regeneration.
doi_str_mv 10.1016/j.eurpolymj.2022.111068
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647396751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305722000726</els_id><sourcerecordid>2647396751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqXwDERiTuqzE7sZqwIFqRIMMFupfWkdtXGwk4q-PY6KWJlu-f_v7j5C7oFmQEHMmgwH37n96dBkjDKWAQAV8wsygbnkKZR5cUkmlEKeclrIa3ITQkMplVzwCamWrjWD7u0RkxEyeOx3VYuz96fVaV_1aJKtr7odtpi4b2sw0e7QuWB7TGrnE_6Ydt62Y65FHyHbwZqq1WMugm0fbslVXe0D3v3OKfl8fvpYvqTrt9XrcrFONS9Zn5a62Eip9cYICXkOc2TAtAGOrGZ5CXJTaCMYmEJKU4ucCl7kiFwyXVTGcD4lD2du593XgKFXjRt8G1cqJnLJSyELiCl5TmnvQvBYq3j-ofInBVSNPlWj_nyq0ac6-4zNxbmJ8YmjRa-Cthg_Ndaj7pVx9l_GD9GChD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647396751</pqid></control><display><type>article</type><title>Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits</title><source>ScienceDirect Journals</source><creator>Farzan, Afsoon ; Borandeh, Sedigheh ; Seppälä, Jukka</creator><creatorcontrib>Farzan, Afsoon ; Borandeh, Sedigheh ; Seppälä, Jukka</creatorcontrib><description>[Display omitted] •Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties. Conductive polymeric nanocomposites have made significant contributions in nerve regeneration. To this aim, the best results are obtained by using nerve guidance conduits (NGCs) with conductive, bio-compatible, bio-degradable tubes as well as special topographical features. In this study, biodegradable, conductive, solvent-free polyurethane/PEGylated graphene oxide (PU/PEG-GO) composites were synthesized and successfully 3D printed into flexible nerve conduits with different precise geometries, such as hollow, porous, and grooved tubes, using stereolithography. The composite containing 5% PEG-GO showed the highest tensile stress (3.51 ± 0.54 MPa), tensile strain at break (∼170%), and conductivity (1.1 × 10−3 S/cm) with the lowest contact angle of 72° attributing to the strong interfacial interactions between PEG-GO nanosheets and the PU matrix. Moreover, the PU/PEG-GO 5% exhibited higher compression strength compared with pure PU and showed appropriate enzymatic degradation after 6 weeks, which is expected to last sufficiently for an efficient nerve regeneration. Altogether the 3D-printed, conductive, biodegradable, and flexible PU/PEG-GO 5% conduit with precise geometry has potential as NGCs for peripheral nerve regeneration.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2022.111068</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D printing ; Biodegradability ; Compressive strength ; Contact angle ; Graphene ; Graphene oxide ; Lithography ; Nanocomposites ; Nerve guides ; Nerve regeneration ; Peripheral nerves ; Polyurethane ; Polyurethane resins ; Regeneration ; Solvent-free polyurethane ; Stereolithography ; Tensile strain ; Tensile strength ; Tensile stress ; Three dimensional composites ; Three dimensional printing ; Tubes</subject><ispartof>European polymer journal, 2022-03, Vol.167, p.111068, Article 111068</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33</citedby><cites>FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Farzan, Afsoon</creatorcontrib><creatorcontrib>Borandeh, Sedigheh</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><title>Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits</title><title>European polymer journal</title><description>[Display omitted] •Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties. Conductive polymeric nanocomposites have made significant contributions in nerve regeneration. To this aim, the best results are obtained by using nerve guidance conduits (NGCs) with conductive, bio-compatible, bio-degradable tubes as well as special topographical features. In this study, biodegradable, conductive, solvent-free polyurethane/PEGylated graphene oxide (PU/PEG-GO) composites were synthesized and successfully 3D printed into flexible nerve conduits with different precise geometries, such as hollow, porous, and grooved tubes, using stereolithography. The composite containing 5% PEG-GO showed the highest tensile stress (3.51 ± 0.54 MPa), tensile strain at break (∼170%), and conductivity (1.1 × 10−3 S/cm) with the lowest contact angle of 72° attributing to the strong interfacial interactions between PEG-GO nanosheets and the PU matrix. Moreover, the PU/PEG-GO 5% exhibited higher compression strength compared with pure PU and showed appropriate enzymatic degradation after 6 weeks, which is expected to last sufficiently for an efficient nerve regeneration. Altogether the 3D-printed, conductive, biodegradable, and flexible PU/PEG-GO 5% conduit with precise geometry has potential as NGCs for peripheral nerve regeneration.</description><subject>3D printing</subject><subject>Biodegradability</subject><subject>Compressive strength</subject><subject>Contact angle</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Lithography</subject><subject>Nanocomposites</subject><subject>Nerve guides</subject><subject>Nerve regeneration</subject><subject>Peripheral nerves</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Regeneration</subject><subject>Solvent-free polyurethane</subject><subject>Stereolithography</subject><subject>Tensile strain</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Tubes</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqXwDERiTuqzE7sZqwIFqRIMMFupfWkdtXGwk4q-PY6KWJlu-f_v7j5C7oFmQEHMmgwH37n96dBkjDKWAQAV8wsygbnkKZR5cUkmlEKeclrIa3ITQkMplVzwCamWrjWD7u0RkxEyeOx3VYuz96fVaV_1aJKtr7odtpi4b2sw0e7QuWB7TGrnE_6Ydt62Y65FHyHbwZqq1WMugm0fbslVXe0D3v3OKfl8fvpYvqTrt9XrcrFONS9Zn5a62Eip9cYICXkOc2TAtAGOrGZ5CXJTaCMYmEJKU4ucCl7kiFwyXVTGcD4lD2du593XgKFXjRt8G1cqJnLJSyELiCl5TmnvQvBYq3j-ofInBVSNPlWj_nyq0ac6-4zNxbmJ8YmjRa-Cthg_Ndaj7pVx9l_GD9GChD4</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Farzan, Afsoon</creator><creator>Borandeh, Sedigheh</creator><creator>Seppälä, Jukka</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220315</creationdate><title>Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits</title><author>Farzan, Afsoon ; Borandeh, Sedigheh ; Seppälä, Jukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D printing</topic><topic>Biodegradability</topic><topic>Compressive strength</topic><topic>Contact angle</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Lithography</topic><topic>Nanocomposites</topic><topic>Nerve guides</topic><topic>Nerve regeneration</topic><topic>Peripheral nerves</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Regeneration</topic><topic>Solvent-free polyurethane</topic><topic>Stereolithography</topic><topic>Tensile strain</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farzan, Afsoon</creatorcontrib><creatorcontrib>Borandeh, Sedigheh</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farzan, Afsoon</au><au>Borandeh, Sedigheh</au><au>Seppälä, Jukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits</atitle><jtitle>European polymer journal</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>167</volume><spage>111068</spage><pages>111068-</pages><artnum>111068</artnum><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted] •Conductive, photocurable polyurethane composite for nerve regeneration.•Manufacturing of nerve conduits with precise geometry by stereolithography.•Flexible nerve conduits with appropriate mechanical properties. Conductive polymeric nanocomposites have made significant contributions in nerve regeneration. To this aim, the best results are obtained by using nerve guidance conduits (NGCs) with conductive, bio-compatible, bio-degradable tubes as well as special topographical features. In this study, biodegradable, conductive, solvent-free polyurethane/PEGylated graphene oxide (PU/PEG-GO) composites were synthesized and successfully 3D printed into flexible nerve conduits with different precise geometries, such as hollow, porous, and grooved tubes, using stereolithography. The composite containing 5% PEG-GO showed the highest tensile stress (3.51 ± 0.54 MPa), tensile strain at break (∼170%), and conductivity (1.1 × 10−3 S/cm) with the lowest contact angle of 72° attributing to the strong interfacial interactions between PEG-GO nanosheets and the PU matrix. Moreover, the PU/PEG-GO 5% exhibited higher compression strength compared with pure PU and showed appropriate enzymatic degradation after 6 weeks, which is expected to last sufficiently for an efficient nerve regeneration. Altogether the 3D-printed, conductive, biodegradable, and flexible PU/PEG-GO 5% conduit with precise geometry has potential as NGCs for peripheral nerve regeneration.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2022.111068</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2022-03, Vol.167, p.111068, Article 111068
issn 0014-3057
1873-1945
language eng
recordid cdi_proquest_journals_2647396751
source ScienceDirect Journals
subjects 3D printing
Biodegradability
Compressive strength
Contact angle
Graphene
Graphene oxide
Lithography
Nanocomposites
Nerve guides
Nerve regeneration
Peripheral nerves
Polyurethane
Polyurethane resins
Regeneration
Solvent-free polyurethane
Stereolithography
Tensile strain
Tensile strength
Tensile stress
Three dimensional composites
Three dimensional printing
Tubes
title Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20polyurethane/PEGylated%20graphene%20oxide%20composite%20for%203D-printed%20nerve%20guidance%20conduits&rft.jtitle=European%20polymer%20journal&rft.au=Farzan,%20Afsoon&rft.date=2022-03-15&rft.volume=167&rft.spage=111068&rft.pages=111068-&rft.artnum=111068&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2022.111068&rft_dat=%3Cproquest_cross%3E2647396751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-9c5b77ccbd6714418e212cd13e2f24917b5cd621d577df6406354ee372c5add33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647396751&rft_id=info:pmid/&rfr_iscdi=true