Loading…

A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging

A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE antennas and wireless propagation letters 2022-04, Vol.21 (4), p.823-827
Main Authors: Liao, Dashuang, Wang, Manting, Chan, Ka Fai, Chan, Chi Hou, Wang, Haogang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3
cites cdi_FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3
container_end_page 827
container_issue 4
container_start_page 823
container_title IEEE antennas and wireless propagation letters
container_volume 21
creator Liao, Dashuang
Wang, Manting
Chan, Ka Fai
Chan, Chi Hou
Wang, Haogang
description A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a static horn. The DDL antenna can achieve dynamic holographic imaging by a simple mechanical translation of the perfect electric conductor (PEC) mask attached to the first lens instead of locally controlling individual meta-atoms through incorporating active elements or phase change materials with complicated feeding networks. The phase profiles for the DDL antenna design are obtained by training four customized input field patterns and corresponding anticipated output target images with the modified D 2 NN. Dynamic switching of four number images "1, 2, 3, 4" is demonstrated by both full-wave simulated and experimental results. The proposed DDL antenna and design strategy present a new approach to achieve wavefront reconfiguration, especially in the absence of tunable components at high frequencies.
doi_str_mv 10.1109/LAWP.2022.3149861
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2647425758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709146</ieee_id><sourcerecordid>2647425758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURYMoWKs_QNwMuE6d7yTL0KotBBSpuBwmkzdpSjqJM-lCf70JLa7eXdxzH5wouid4QQjOnor8631BMaULRniWSnIRzYjgaSwSkVxOmcmYUCquo5sQ9hiTRAo2i5ocrQD6uADtXeNq9Ox02UKFVk0wHgYYA7RgBt8YVIALKHcDOKeR7Tzagtc78MMv-gDTOdvURz_haN21Xe11vxupzUHX4_JtdGV1G-DufOfR58vzdrmOi7fXzTIvYkMzNsQik9ZCQqROdcktrnRlLUsNFWApzTQWwKiuSkuZTYCkJTPccllxTnQpsWXz6PG02_vu-whhUPvu6N34UlHJE05HI-nYIqeW8V0IHqzqfXPQ_kcRrCajajKqJqPqbHRkHk5MAwD__SzBGeGS_QHUnHNa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647425758</pqid></control><display><type>article</type><title>A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liao, Dashuang ; Wang, Manting ; Chan, Ka Fai ; Chan, Chi Hou ; Wang, Haogang</creator><creatorcontrib>Liao, Dashuang ; Wang, Manting ; Chan, Ka Fai ; Chan, Chi Hou ; Wang, Haogang</creatorcontrib><description>A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a static horn. The DDL antenna can achieve dynamic holographic imaging by a simple mechanical translation of the perfect electric conductor (PEC) mask attached to the first lens instead of locally controlling individual meta-atoms through incorporating active elements or phase change materials with complicated feeding networks. The phase profiles for the DDL antenna design are obtained by training four customized input field patterns and corresponding anticipated output target images with the modified D 2 NN. Dynamic switching of four number images "1, 2, 3, 4" is demonstrated by both full-wave simulated and experimental results. The proposed DDL antenna and design strategy present a new approach to achieve wavefront reconfiguration, especially in the absence of tunable components at high frequencies.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2022.3149861</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna design ; Antennas ; Artificial neural networks ; Conductors ; Deep learning ; Dielectrics ; Diffractive deep neural network ; discrete dielectric lens (DDL) antenna ; Electric conductors ; Holography ; Lens antennas ; Lenses ; Machine learning ; Optical imaging ; Phase change materials ; reconfigurable holograms ; Reconfiguration ; terahertz (THz) ; Terahertz frequencies ; Training ; Wave fronts</subject><ispartof>IEEE antennas and wireless propagation letters, 2022-04, Vol.21 (4), p.823-827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3</citedby><cites>FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3</cites><orcidid>0000-0003-2309-9886 ; 0000-0002-5719-6855 ; 0000-0002-9718-0831 ; 0000-0002-9956-8530 ; 0000-0003-2501-5332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709146$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liao, Dashuang</creatorcontrib><creatorcontrib>Wang, Manting</creatorcontrib><creatorcontrib>Chan, Ka Fai</creatorcontrib><creatorcontrib>Chan, Chi Hou</creatorcontrib><creatorcontrib>Wang, Haogang</creatorcontrib><title>A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a static horn. The DDL antenna can achieve dynamic holographic imaging by a simple mechanical translation of the perfect electric conductor (PEC) mask attached to the first lens instead of locally controlling individual meta-atoms through incorporating active elements or phase change materials with complicated feeding networks. The phase profiles for the DDL antenna design are obtained by training four customized input field patterns and corresponding anticipated output target images with the modified D 2 NN. Dynamic switching of four number images "1, 2, 3, 4" is demonstrated by both full-wave simulated and experimental results. The proposed DDL antenna and design strategy present a new approach to achieve wavefront reconfiguration, especially in the absence of tunable components at high frequencies.</description><subject>Antenna design</subject><subject>Antennas</subject><subject>Artificial neural networks</subject><subject>Conductors</subject><subject>Deep learning</subject><subject>Dielectrics</subject><subject>Diffractive deep neural network</subject><subject>discrete dielectric lens (DDL) antenna</subject><subject>Electric conductors</subject><subject>Holography</subject><subject>Lens antennas</subject><subject>Lenses</subject><subject>Machine learning</subject><subject>Optical imaging</subject><subject>Phase change materials</subject><subject>reconfigurable holograms</subject><subject>Reconfiguration</subject><subject>terahertz (THz)</subject><subject>Terahertz frequencies</subject><subject>Training</subject><subject>Wave fronts</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURYMoWKs_QNwMuE6d7yTL0KotBBSpuBwmkzdpSjqJM-lCf70JLa7eXdxzH5wouid4QQjOnor8631BMaULRniWSnIRzYjgaSwSkVxOmcmYUCquo5sQ9hiTRAo2i5ocrQD6uADtXeNq9Ox02UKFVk0wHgYYA7RgBt8YVIALKHcDOKeR7Tzagtc78MMv-gDTOdvURz_haN21Xe11vxupzUHX4_JtdGV1G-DufOfR58vzdrmOi7fXzTIvYkMzNsQik9ZCQqROdcktrnRlLUsNFWApzTQWwKiuSkuZTYCkJTPccllxTnQpsWXz6PG02_vu-whhUPvu6N34UlHJE05HI-nYIqeW8V0IHqzqfXPQ_kcRrCajajKqJqPqbHRkHk5MAwD__SzBGeGS_QHUnHNa</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Liao, Dashuang</creator><creator>Wang, Manting</creator><creator>Chan, Ka Fai</creator><creator>Chan, Chi Hou</creator><creator>Wang, Haogang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2309-9886</orcidid><orcidid>https://orcid.org/0000-0002-5719-6855</orcidid><orcidid>https://orcid.org/0000-0002-9718-0831</orcidid><orcidid>https://orcid.org/0000-0002-9956-8530</orcidid><orcidid>https://orcid.org/0000-0003-2501-5332</orcidid></search><sort><creationdate>20220401</creationdate><title>A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging</title><author>Liao, Dashuang ; Wang, Manting ; Chan, Ka Fai ; Chan, Chi Hou ; Wang, Haogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna design</topic><topic>Antennas</topic><topic>Artificial neural networks</topic><topic>Conductors</topic><topic>Deep learning</topic><topic>Dielectrics</topic><topic>Diffractive deep neural network</topic><topic>discrete dielectric lens (DDL) antenna</topic><topic>Electric conductors</topic><topic>Holography</topic><topic>Lens antennas</topic><topic>Lenses</topic><topic>Machine learning</topic><topic>Optical imaging</topic><topic>Phase change materials</topic><topic>reconfigurable holograms</topic><topic>Reconfiguration</topic><topic>terahertz (THz)</topic><topic>Terahertz frequencies</topic><topic>Training</topic><topic>Wave fronts</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Dashuang</creatorcontrib><creatorcontrib>Wang, Manting</creatorcontrib><creatorcontrib>Chan, Ka Fai</creatorcontrib><creatorcontrib>Chan, Chi Hou</creatorcontrib><creatorcontrib>Wang, Haogang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Dashuang</au><au>Wang, Manting</au><au>Chan, Ka Fai</au><au>Chan, Chi Hou</au><au>Wang, Haogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>21</volume><issue>4</issue><spage>823</spage><epage>827</epage><pages>823-827</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a static horn. The DDL antenna can achieve dynamic holographic imaging by a simple mechanical translation of the perfect electric conductor (PEC) mask attached to the first lens instead of locally controlling individual meta-atoms through incorporating active elements or phase change materials with complicated feeding networks. The phase profiles for the DDL antenna design are obtained by training four customized input field patterns and corresponding anticipated output target images with the modified D 2 NN. Dynamic switching of four number images "1, 2, 3, 4" is demonstrated by both full-wave simulated and experimental results. The proposed DDL antenna and design strategy present a new approach to achieve wavefront reconfiguration, especially in the absence of tunable components at high frequencies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2022.3149861</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2309-9886</orcidid><orcidid>https://orcid.org/0000-0002-5719-6855</orcidid><orcidid>https://orcid.org/0000-0002-9718-0831</orcidid><orcidid>https://orcid.org/0000-0002-9956-8530</orcidid><orcidid>https://orcid.org/0000-0003-2501-5332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2022-04, Vol.21 (4), p.823-827
issn 1536-1225
1548-5757
language eng
recordid cdi_proquest_journals_2647425758
source IEEE Electronic Library (IEL) Journals
subjects Antenna design
Antennas
Artificial neural networks
Conductors
Deep learning
Dielectrics
Diffractive deep neural network
discrete dielectric lens (DDL) antenna
Electric conductors
Holography
Lens antennas
Lenses
Machine learning
Optical imaging
Phase change materials
reconfigurable holograms
Reconfiguration
terahertz (THz)
Terahertz frequencies
Training
Wave fronts
title A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep-Learning%20Enabled%20Discrete%20Dielectric%20Lens%20Antenna%20for%20Terahertz%20Reconfigurable%20Holographic%20Imaging&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Liao,%20Dashuang&rft.date=2022-04-01&rft.volume=21&rft.issue=4&rft.spage=823&rft.epage=827&rft.pages=823-827&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2022.3149861&rft_dat=%3Cproquest_ieee_%3E2647425758%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647425758&rft_id=info:pmid/&rft_ieee_id=9709146&rfr_iscdi=true