Loading…
A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging
A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a...
Saved in:
Published in: | IEEE antennas and wireless propagation letters 2022-04, Vol.21 (4), p.823-827 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3 |
container_end_page | 827 |
container_issue | 4 |
container_start_page | 823 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 21 |
creator | Liao, Dashuang Wang, Manting Chan, Ka Fai Chan, Chi Hou Wang, Haogang |
description | A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a static horn. The DDL antenna can achieve dynamic holographic imaging by a simple mechanical translation of the perfect electric conductor (PEC) mask attached to the first lens instead of locally controlling individual meta-atoms through incorporating active elements or phase change materials with complicated feeding networks. The phase profiles for the DDL antenna design are obtained by training four customized input field patterns and corresponding anticipated output target images with the modified D 2 NN. Dynamic switching of four number images "1, 2, 3, 4" is demonstrated by both full-wave simulated and experimental results. The proposed DDL antenna and design strategy present a new approach to achieve wavefront reconfiguration, especially in the absence of tunable components at high frequencies. |
doi_str_mv | 10.1109/LAWP.2022.3149861 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2647425758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709146</ieee_id><sourcerecordid>2647425758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURYMoWKs_QNwMuE6d7yTL0KotBBSpuBwmkzdpSjqJM-lCf70JLa7eXdxzH5wouid4QQjOnor8631BMaULRniWSnIRzYjgaSwSkVxOmcmYUCquo5sQ9hiTRAo2i5ocrQD6uADtXeNq9Ox02UKFVk0wHgYYA7RgBt8YVIALKHcDOKeR7Tzagtc78MMv-gDTOdvURz_haN21Xe11vxupzUHX4_JtdGV1G-DufOfR58vzdrmOi7fXzTIvYkMzNsQik9ZCQqROdcktrnRlLUsNFWApzTQWwKiuSkuZTYCkJTPccllxTnQpsWXz6PG02_vu-whhUPvu6N34UlHJE05HI-nYIqeW8V0IHqzqfXPQ_kcRrCajajKqJqPqbHRkHk5MAwD__SzBGeGS_QHUnHNa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647425758</pqid></control><display><type>article</type><title>A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liao, Dashuang ; Wang, Manting ; Chan, Ka Fai ; Chan, Chi Hou ; Wang, Haogang</creator><creatorcontrib>Liao, Dashuang ; Wang, Manting ; Chan, Ka Fai ; Chan, Chi Hou ; Wang, Haogang</creatorcontrib><description>A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a static horn. The DDL antenna can achieve dynamic holographic imaging by a simple mechanical translation of the perfect electric conductor (PEC) mask attached to the first lens instead of locally controlling individual meta-atoms through incorporating active elements or phase change materials with complicated feeding networks. The phase profiles for the DDL antenna design are obtained by training four customized input field patterns and corresponding anticipated output target images with the modified D 2 NN. Dynamic switching of four number images "1, 2, 3, 4" is demonstrated by both full-wave simulated and experimental results. The proposed DDL antenna and design strategy present a new approach to achieve wavefront reconfiguration, especially in the absence of tunable components at high frequencies.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2022.3149861</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna design ; Antennas ; Artificial neural networks ; Conductors ; Deep learning ; Dielectrics ; Diffractive deep neural network ; discrete dielectric lens (DDL) antenna ; Electric conductors ; Holography ; Lens antennas ; Lenses ; Machine learning ; Optical imaging ; Phase change materials ; reconfigurable holograms ; Reconfiguration ; terahertz (THz) ; Terahertz frequencies ; Training ; Wave fronts</subject><ispartof>IEEE antennas and wireless propagation letters, 2022-04, Vol.21 (4), p.823-827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3</citedby><cites>FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3</cites><orcidid>0000-0003-2309-9886 ; 0000-0002-5719-6855 ; 0000-0002-9718-0831 ; 0000-0002-9956-8530 ; 0000-0003-2501-5332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709146$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liao, Dashuang</creatorcontrib><creatorcontrib>Wang, Manting</creatorcontrib><creatorcontrib>Chan, Ka Fai</creatorcontrib><creatorcontrib>Chan, Chi Hou</creatorcontrib><creatorcontrib>Wang, Haogang</creatorcontrib><title>A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a static horn. The DDL antenna can achieve dynamic holographic imaging by a simple mechanical translation of the perfect electric conductor (PEC) mask attached to the first lens instead of locally controlling individual meta-atoms through incorporating active elements or phase change materials with complicated feeding networks. The phase profiles for the DDL antenna design are obtained by training four customized input field patterns and corresponding anticipated output target images with the modified D 2 NN. Dynamic switching of four number images "1, 2, 3, 4" is demonstrated by both full-wave simulated and experimental results. The proposed DDL antenna and design strategy present a new approach to achieve wavefront reconfiguration, especially in the absence of tunable components at high frequencies.</description><subject>Antenna design</subject><subject>Antennas</subject><subject>Artificial neural networks</subject><subject>Conductors</subject><subject>Deep learning</subject><subject>Dielectrics</subject><subject>Diffractive deep neural network</subject><subject>discrete dielectric lens (DDL) antenna</subject><subject>Electric conductors</subject><subject>Holography</subject><subject>Lens antennas</subject><subject>Lenses</subject><subject>Machine learning</subject><subject>Optical imaging</subject><subject>Phase change materials</subject><subject>reconfigurable holograms</subject><subject>Reconfiguration</subject><subject>terahertz (THz)</subject><subject>Terahertz frequencies</subject><subject>Training</subject><subject>Wave fronts</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURYMoWKs_QNwMuE6d7yTL0KotBBSpuBwmkzdpSjqJM-lCf70JLa7eXdxzH5wouid4QQjOnor8631BMaULRniWSnIRzYjgaSwSkVxOmcmYUCquo5sQ9hiTRAo2i5ocrQD6uADtXeNq9Ox02UKFVk0wHgYYA7RgBt8YVIALKHcDOKeR7Tzagtc78MMv-gDTOdvURz_haN21Xe11vxupzUHX4_JtdGV1G-DufOfR58vzdrmOi7fXzTIvYkMzNsQik9ZCQqROdcktrnRlLUsNFWApzTQWwKiuSkuZTYCkJTPccllxTnQpsWXz6PG02_vu-whhUPvu6N34UlHJE05HI-nYIqeW8V0IHqzqfXPQ_kcRrCajajKqJqPqbHRkHk5MAwD__SzBGeGS_QHUnHNa</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Liao, Dashuang</creator><creator>Wang, Manting</creator><creator>Chan, Ka Fai</creator><creator>Chan, Chi Hou</creator><creator>Wang, Haogang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2309-9886</orcidid><orcidid>https://orcid.org/0000-0002-5719-6855</orcidid><orcidid>https://orcid.org/0000-0002-9718-0831</orcidid><orcidid>https://orcid.org/0000-0002-9956-8530</orcidid><orcidid>https://orcid.org/0000-0003-2501-5332</orcidid></search><sort><creationdate>20220401</creationdate><title>A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging</title><author>Liao, Dashuang ; Wang, Manting ; Chan, Ka Fai ; Chan, Chi Hou ; Wang, Haogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna design</topic><topic>Antennas</topic><topic>Artificial neural networks</topic><topic>Conductors</topic><topic>Deep learning</topic><topic>Dielectrics</topic><topic>Diffractive deep neural network</topic><topic>discrete dielectric lens (DDL) antenna</topic><topic>Electric conductors</topic><topic>Holography</topic><topic>Lens antennas</topic><topic>Lenses</topic><topic>Machine learning</topic><topic>Optical imaging</topic><topic>Phase change materials</topic><topic>reconfigurable holograms</topic><topic>Reconfiguration</topic><topic>terahertz (THz)</topic><topic>Terahertz frequencies</topic><topic>Training</topic><topic>Wave fronts</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Dashuang</creatorcontrib><creatorcontrib>Wang, Manting</creatorcontrib><creatorcontrib>Chan, Ka Fai</creatorcontrib><creatorcontrib>Chan, Chi Hou</creatorcontrib><creatorcontrib>Wang, Haogang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Dashuang</au><au>Wang, Manting</au><au>Chan, Ka Fai</au><au>Chan, Chi Hou</au><au>Wang, Haogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>21</volume><issue>4</issue><spage>823</spage><epage>827</epage><pages>823-827</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>A deep-learning enabled discrete dielectric lens (DDL) antenna with terahertz hologram reconfigurability is proposed. The antenna is constructed by two cascaded discrete dielectric lenses, which are designed based on a diffractive deep neural network (D 2 NN) with an improved loss function, fed by a static horn. The DDL antenna can achieve dynamic holographic imaging by a simple mechanical translation of the perfect electric conductor (PEC) mask attached to the first lens instead of locally controlling individual meta-atoms through incorporating active elements or phase change materials with complicated feeding networks. The phase profiles for the DDL antenna design are obtained by training four customized input field patterns and corresponding anticipated output target images with the modified D 2 NN. Dynamic switching of four number images "1, 2, 3, 4" is demonstrated by both full-wave simulated and experimental results. The proposed DDL antenna and design strategy present a new approach to achieve wavefront reconfiguration, especially in the absence of tunable components at high frequencies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2022.3149861</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2309-9886</orcidid><orcidid>https://orcid.org/0000-0002-5719-6855</orcidid><orcidid>https://orcid.org/0000-0002-9718-0831</orcidid><orcidid>https://orcid.org/0000-0002-9956-8530</orcidid><orcidid>https://orcid.org/0000-0003-2501-5332</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2022-04, Vol.21 (4), p.823-827 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_proquest_journals_2647425758 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Antenna design Antennas Artificial neural networks Conductors Deep learning Dielectrics Diffractive deep neural network discrete dielectric lens (DDL) antenna Electric conductors Holography Lens antennas Lenses Machine learning Optical imaging Phase change materials reconfigurable holograms Reconfiguration terahertz (THz) Terahertz frequencies Training Wave fronts |
title | A Deep-Learning Enabled Discrete Dielectric Lens Antenna for Terahertz Reconfigurable Holographic Imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep-Learning%20Enabled%20Discrete%20Dielectric%20Lens%20Antenna%20for%20Terahertz%20Reconfigurable%20Holographic%20Imaging&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Liao,%20Dashuang&rft.date=2022-04-01&rft.volume=21&rft.issue=4&rft.spage=823&rft.epage=827&rft.pages=823-827&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2022.3149861&rft_dat=%3Cproquest_ieee_%3E2647425758%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-596ffe716a8ab4f0dadff38c25ef229a05e32adbf23f7e18b3c4f46d441ab60f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647425758&rft_id=info:pmid/&rft_ieee_id=9709146&rfr_iscdi=true |