Loading…
Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm
Copper sulfide (Cu x S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu x S nanostructure offer its var...
Saved in:
Published in: | Nano research 2022-04, Vol.15 (4), p.3161-3169 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013 |
container_end_page | 3169 |
container_issue | 4 |
container_start_page | 3161 |
container_title | Nano research |
container_volume | 15 |
creator | Xi, Min Xu, Longchang Li, Nian Zhang, Shudong Wang, Zhenyang |
description | Copper sulfide (Cu
x
S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu
x
S nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu
27
S
24
nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu
27
S
24
. And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu
27
S
24
nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu
27
S
24
nanospheres. |
doi_str_mv | 10.1007/s12274-021-3880-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647475846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647475846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTbM2E7sLFHFSyoCCVhbbuK0KYld7BSJvydtQKyYzczi3DvSIeQc4RIB1FVCzpVkwJEJrYGJAzLBotAMhjn8vZHLY3KS0hog5yj1hDw-tzZ1wTclnW25euGSeutDaZcu0TpE6sOna2kKrY10swp96FcudrbdY41_p9ZX-7tu2u6UHNW2Te7sZ0_J2-3N6-yezZ_uHmbXc1YKzHtmC5RWai0wc1KWUNWgOEcBdeZynQNq5SqnJecCrCuwzNAtnBY7dFEBiim5GHs3MXxsXerNOmyjH14ankslVaZlPlA4UmUMKUVXm01sOhu_DILZWTOjNTNYMztrRgwZPmbSwPqli3_N_4e-ASyWbhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647475846</pqid></control><display><type>article</type><title>Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm</title><source>Springer Link</source><creator>Xi, Min ; Xu, Longchang ; Li, Nian ; Zhang, Shudong ; Wang, Zhenyang</creator><creatorcontrib>Xi, Min ; Xu, Longchang ; Li, Nian ; Zhang, Shudong ; Wang, Zhenyang</creatorcontrib><description>Copper sulfide (Cu
x
S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu
x
S nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu
27
S
24
nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu
27
S
24
. And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu
27
S
24
nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu
27
S
24
nanospheres.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3880-3</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Copper sulfides ; Covellite ; Materials Science ; Mathematical analysis ; Nanospheres ; Nanotechnology ; Optical properties ; Photothermal conversion ; Photovoltaic cells ; Plasmonics ; Research Article ; Semiconductor materials ; Surface plasmon resonance</subject><ispartof>Nano research, 2022-04, Vol.15 (4), p.3161-3169</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013</citedby><cites>FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xi, Min</creatorcontrib><creatorcontrib>Xu, Longchang</creatorcontrib><creatorcontrib>Li, Nian</creatorcontrib><creatorcontrib>Zhang, Shudong</creatorcontrib><creatorcontrib>Wang, Zhenyang</creatorcontrib><title>Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Copper sulfide (Cu
x
S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu
x
S nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu
27
S
24
nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu
27
S
24
. And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu
27
S
24
nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu
27
S
24
nanospheres.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Copper sulfides</subject><subject>Covellite</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Nanospheres</subject><subject>Nanotechnology</subject><subject>Optical properties</subject><subject>Photothermal conversion</subject><subject>Photovoltaic cells</subject><subject>Plasmonics</subject><subject>Research Article</subject><subject>Semiconductor materials</subject><subject>Surface plasmon resonance</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTbM2E7sLFHFSyoCCVhbbuK0KYld7BSJvydtQKyYzczi3DvSIeQc4RIB1FVCzpVkwJEJrYGJAzLBotAMhjn8vZHLY3KS0hog5yj1hDw-tzZ1wTclnW25euGSeutDaZcu0TpE6sOna2kKrY10swp96FcudrbdY41_p9ZX-7tu2u6UHNW2Te7sZ0_J2-3N6-yezZ_uHmbXc1YKzHtmC5RWai0wc1KWUNWgOEcBdeZynQNq5SqnJecCrCuwzNAtnBY7dFEBiim5GHs3MXxsXerNOmyjH14ankslVaZlPlA4UmUMKUVXm01sOhu_DILZWTOjNTNYMztrRgwZPmbSwPqli3_N_4e-ASyWbhQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Xi, Min</creator><creator>Xu, Longchang</creator><creator>Li, Nian</creator><creator>Zhang, Shudong</creator><creator>Wang, Zhenyang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220401</creationdate><title>Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm</title><author>Xi, Min ; Xu, Longchang ; Li, Nian ; Zhang, Shudong ; Wang, Zhenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Copper sulfides</topic><topic>Covellite</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Nanospheres</topic><topic>Nanotechnology</topic><topic>Optical properties</topic><topic>Photothermal conversion</topic><topic>Photovoltaic cells</topic><topic>Plasmonics</topic><topic>Research Article</topic><topic>Semiconductor materials</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Min</creatorcontrib><creatorcontrib>Xu, Longchang</creatorcontrib><creatorcontrib>Li, Nian</creatorcontrib><creatorcontrib>Zhang, Shudong</creatorcontrib><creatorcontrib>Wang, Zhenyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Min</au><au>Xu, Longchang</au><au>Li, Nian</au><au>Zhang, Shudong</au><au>Wang, Zhenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>3161</spage><epage>3169</epage><pages>3161-3169</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Copper sulfide (Cu
x
S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu
x
S nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu
27
S
24
nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu
27
S
24
. And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu
27
S
24
nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu
27
S
24
nanospheres.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3880-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-04, Vol.15 (4), p.3161-3169 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2647475846 |
source | Springer Link |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Copper sulfides Covellite Materials Science Mathematical analysis Nanospheres Nanotechnology Optical properties Photothermal conversion Photovoltaic cells Plasmonics Research Article Semiconductor materials Surface plasmon resonance |
title | Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Cu27S24%20nanocages%20for%20novel%20solar%20photothermal%20nanoink%20and%20nanofilm&rft.jtitle=Nano%20research&rft.au=Xi,%20Min&rft.date=2022-04-01&rft.volume=15&rft.issue=4&rft.spage=3161&rft.epage=3169&rft.pages=3161-3169&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3880-3&rft_dat=%3Cproquest_cross%3E2647475846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647475846&rft_id=info:pmid/&rfr_iscdi=true |