Loading…

Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm

Copper sulfide (Cu x S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu x S nanostructure offer its var...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2022-04, Vol.15 (4), p.3161-3169
Main Authors: Xi, Min, Xu, Longchang, Li, Nian, Zhang, Shudong, Wang, Zhenyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013
cites cdi_FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013
container_end_page 3169
container_issue 4
container_start_page 3161
container_title Nano research
container_volume 15
creator Xi, Min
Xu, Longchang
Li, Nian
Zhang, Shudong
Wang, Zhenyang
description Copper sulfide (Cu x S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu x S nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu 27 S 24 nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu 27 S 24 . And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu 27 S 24 nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu 27 S 24 nanospheres.
doi_str_mv 10.1007/s12274-021-3880-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647475846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647475846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTbM2E7sLFHFSyoCCVhbbuK0KYld7BSJvydtQKyYzczi3DvSIeQc4RIB1FVCzpVkwJEJrYGJAzLBotAMhjn8vZHLY3KS0hog5yj1hDw-tzZ1wTclnW25euGSeutDaZcu0TpE6sOna2kKrY10swp96FcudrbdY41_p9ZX-7tu2u6UHNW2Te7sZ0_J2-3N6-yezZ_uHmbXc1YKzHtmC5RWai0wc1KWUNWgOEcBdeZynQNq5SqnJecCrCuwzNAtnBY7dFEBiim5GHs3MXxsXerNOmyjH14ankslVaZlPlA4UmUMKUVXm01sOhu_DILZWTOjNTNYMztrRgwZPmbSwPqli3_N_4e-ASyWbhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647475846</pqid></control><display><type>article</type><title>Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm</title><source>Springer Link</source><creator>Xi, Min ; Xu, Longchang ; Li, Nian ; Zhang, Shudong ; Wang, Zhenyang</creator><creatorcontrib>Xi, Min ; Xu, Longchang ; Li, Nian ; Zhang, Shudong ; Wang, Zhenyang</creatorcontrib><description>Copper sulfide (Cu x S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu x S nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu 27 S 24 nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu 27 S 24 . And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu 27 S 24 nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu 27 S 24 nanospheres.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3880-3</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Copper sulfides ; Covellite ; Materials Science ; Mathematical analysis ; Nanospheres ; Nanotechnology ; Optical properties ; Photothermal conversion ; Photovoltaic cells ; Plasmonics ; Research Article ; Semiconductor materials ; Surface plasmon resonance</subject><ispartof>Nano research, 2022-04, Vol.15 (4), p.3161-3169</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013</citedby><cites>FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xi, Min</creatorcontrib><creatorcontrib>Xu, Longchang</creatorcontrib><creatorcontrib>Li, Nian</creatorcontrib><creatorcontrib>Zhang, Shudong</creatorcontrib><creatorcontrib>Wang, Zhenyang</creatorcontrib><title>Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Copper sulfide (Cu x S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu x S nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu 27 S 24 nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu 27 S 24 . And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu 27 S 24 nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu 27 S 24 nanospheres.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Copper sulfides</subject><subject>Covellite</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Nanospheres</subject><subject>Nanotechnology</subject><subject>Optical properties</subject><subject>Photothermal conversion</subject><subject>Photovoltaic cells</subject><subject>Plasmonics</subject><subject>Research Article</subject><subject>Semiconductor materials</subject><subject>Surface plasmon resonance</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTbM2E7sLFHFSyoCCVhbbuK0KYld7BSJvydtQKyYzczi3DvSIeQc4RIB1FVCzpVkwJEJrYGJAzLBotAMhjn8vZHLY3KS0hog5yj1hDw-tzZ1wTclnW25euGSeutDaZcu0TpE6sOna2kKrY10swp96FcudrbdY41_p9ZX-7tu2u6UHNW2Te7sZ0_J2-3N6-yezZ_uHmbXc1YKzHtmC5RWai0wc1KWUNWgOEcBdeZynQNq5SqnJecCrCuwzNAtnBY7dFEBiim5GHs3MXxsXerNOmyjH14ankslVaZlPlA4UmUMKUVXm01sOhu_DILZWTOjNTNYMztrRgwZPmbSwPqli3_N_4e-ASyWbhQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Xi, Min</creator><creator>Xu, Longchang</creator><creator>Li, Nian</creator><creator>Zhang, Shudong</creator><creator>Wang, Zhenyang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220401</creationdate><title>Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm</title><author>Xi, Min ; Xu, Longchang ; Li, Nian ; Zhang, Shudong ; Wang, Zhenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Copper sulfides</topic><topic>Covellite</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Nanospheres</topic><topic>Nanotechnology</topic><topic>Optical properties</topic><topic>Photothermal conversion</topic><topic>Photovoltaic cells</topic><topic>Plasmonics</topic><topic>Research Article</topic><topic>Semiconductor materials</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Min</creatorcontrib><creatorcontrib>Xu, Longchang</creatorcontrib><creatorcontrib>Li, Nian</creatorcontrib><creatorcontrib>Zhang, Shudong</creatorcontrib><creatorcontrib>Wang, Zhenyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Min</au><au>Xu, Longchang</au><au>Li, Nian</au><au>Zhang, Shudong</au><au>Wang, Zhenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>3161</spage><epage>3169</epage><pages>3161-3169</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Copper sulfide (Cu x S) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of Cu x S nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu 27 S 24 nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu 27 S 24 . And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu 27 S 24 nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu 27 S 24 nanospheres.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3880-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-04, Vol.15 (4), p.3161-3169
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2647475846
source Springer Link
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Copper sulfides
Covellite
Materials Science
Mathematical analysis
Nanospheres
Nanotechnology
Optical properties
Photothermal conversion
Photovoltaic cells
Plasmonics
Research Article
Semiconductor materials
Surface plasmon resonance
title Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Cu27S24%20nanocages%20for%20novel%20solar%20photothermal%20nanoink%20and%20nanofilm&rft.jtitle=Nano%20research&rft.au=Xi,%20Min&rft.date=2022-04-01&rft.volume=15&rft.issue=4&rft.spage=3161&rft.epage=3169&rft.pages=3161-3169&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3880-3&rft_dat=%3Cproquest_cross%3E2647475846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a914a488315e44c0df0722130f5e6860187ede842230ae91c51ebe834c0dbd013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647475846&rft_id=info:pmid/&rfr_iscdi=true