Loading…
A new utility‐aware anonymization model for privacy preserving data publishing
Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving a...
Saved in:
Published in: | Concurrency and computation 2022-05, Vol.34 (10), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3 |
container_end_page | n/a |
container_issue | 10 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 34 |
creator | Canbay, Yavuz Sagiroglu, Seref Vural, Yilmaz |
description | Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving approach, helps hiding the identities of data subjects and also provides data utility. Since data utility is effective on the accuracy of analysis model, new anonymization algorithms to improve data utility are always required. Mondrian is one of the near‐optimal anonymization models that presents high data utility and is frequently used for PPDP. However, the upper bound problem of Mondrian causes a decrease in potential data utility. This article focuses on this problem and proposes a new utility‐aware anonymization model (u‐Mondrian). Experimental results have shown that u‐Mondrian presents an acceptable solution to the upper bound problem, increases total data utility and presents higher data utility than Mondrian for different partitioning strategies and datasets. |
doi_str_mv | 10.1002/cpe.6808 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647531921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647531921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWKvgIwS8eNmaj900eyylfkDBHvQc0uyspmw3a7Lbsp58BJ_RJzFrxZuH4T8DP2aYH0KXlEwoIezGNDARksgjNKIZZwkRPD3-65k4RWchbAihlHA6QqsZrmGPu9ZWtu2_Pj71XnvAunZ1v7XvurWuxltXQIVL53Hj7U6bPiYE8Dtbv-BCtxo33bqy4TXO5-ik1FWAi98co-fbxdP8Plk-3j3MZ8vEsJzLZM1LXlJpOGTMDFVQASQlbGqkZJxxYpjMAATINOOlLFIhilxmaSlyZoTmY3R12Nt499ZBaNXGdb6OJxUT6TTjNGc0UtcHyngXgodSxQ-22veKEjX4UtGXGnxFNDmge1tB_y-n5qvFD_8NNRlsow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647531921</pqid></control><display><type>article</type><title>A new utility‐aware anonymization model for privacy preserving data publishing</title><source>Wiley</source><creator>Canbay, Yavuz ; Sagiroglu, Seref ; Vural, Yilmaz</creator><creatorcontrib>Canbay, Yavuz ; Sagiroglu, Seref ; Vural, Yilmaz</creatorcontrib><description>Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving approach, helps hiding the identities of data subjects and also provides data utility. Since data utility is effective on the accuracy of analysis model, new anonymization algorithms to improve data utility are always required. Mondrian is one of the near‐optimal anonymization models that presents high data utility and is frequently used for PPDP. However, the upper bound problem of Mondrian causes a decrease in potential data utility. This article focuses on this problem and proposes a new utility‐aware anonymization model (u‐Mondrian). Experimental results have shown that u‐Mondrian presents an acceptable solution to the upper bound problem, increases total data utility and presents higher data utility than Mondrian for different partitioning strategies and datasets.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6808</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; anonymization ; Model accuracy ; Privacy ; privacy preserving data publishing ; Publishing ; Upper bounds ; utility‐aware model</subject><ispartof>Concurrency and computation, 2022-05, Vol.34 (10), p.n/a</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3</citedby><cites>FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3</cites><orcidid>0000-0003-2316-7893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Canbay, Yavuz</creatorcontrib><creatorcontrib>Sagiroglu, Seref</creatorcontrib><creatorcontrib>Vural, Yilmaz</creatorcontrib><title>A new utility‐aware anonymization model for privacy preserving data publishing</title><title>Concurrency and computation</title><description>Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving approach, helps hiding the identities of data subjects and also provides data utility. Since data utility is effective on the accuracy of analysis model, new anonymization algorithms to improve data utility are always required. Mondrian is one of the near‐optimal anonymization models that presents high data utility and is frequently used for PPDP. However, the upper bound problem of Mondrian causes a decrease in potential data utility. This article focuses on this problem and proposes a new utility‐aware anonymization model (u‐Mondrian). Experimental results have shown that u‐Mondrian presents an acceptable solution to the upper bound problem, increases total data utility and presents higher data utility than Mondrian for different partitioning strategies and datasets.</description><subject>Algorithms</subject><subject>anonymization</subject><subject>Model accuracy</subject><subject>Privacy</subject><subject>privacy preserving data publishing</subject><subject>Publishing</subject><subject>Upper bounds</subject><subject>utility‐aware model</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQx4MoWKvgIwS8eNmaj900eyylfkDBHvQc0uyspmw3a7Lbsp58BJ_RJzFrxZuH4T8DP2aYH0KXlEwoIezGNDARksgjNKIZZwkRPD3-65k4RWchbAihlHA6QqsZrmGPu9ZWtu2_Pj71XnvAunZ1v7XvurWuxltXQIVL53Hj7U6bPiYE8Dtbv-BCtxo33bqy4TXO5-ik1FWAi98co-fbxdP8Plk-3j3MZ8vEsJzLZM1LXlJpOGTMDFVQASQlbGqkZJxxYpjMAATINOOlLFIhilxmaSlyZoTmY3R12Nt499ZBaNXGdb6OJxUT6TTjNGc0UtcHyngXgodSxQ-22veKEjX4UtGXGnxFNDmge1tB_y-n5qvFD_8NNRlsow</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Canbay, Yavuz</creator><creator>Sagiroglu, Seref</creator><creator>Vural, Yilmaz</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2316-7893</orcidid></search><sort><creationdate>20220501</creationdate><title>A new utility‐aware anonymization model for privacy preserving data publishing</title><author>Canbay, Yavuz ; Sagiroglu, Seref ; Vural, Yilmaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>anonymization</topic><topic>Model accuracy</topic><topic>Privacy</topic><topic>privacy preserving data publishing</topic><topic>Publishing</topic><topic>Upper bounds</topic><topic>utility‐aware model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canbay, Yavuz</creatorcontrib><creatorcontrib>Sagiroglu, Seref</creatorcontrib><creatorcontrib>Vural, Yilmaz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canbay, Yavuz</au><au>Sagiroglu, Seref</au><au>Vural, Yilmaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new utility‐aware anonymization model for privacy preserving data publishing</atitle><jtitle>Concurrency and computation</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>34</volume><issue>10</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving approach, helps hiding the identities of data subjects and also provides data utility. Since data utility is effective on the accuracy of analysis model, new anonymization algorithms to improve data utility are always required. Mondrian is one of the near‐optimal anonymization models that presents high data utility and is frequently used for PPDP. However, the upper bound problem of Mondrian causes a decrease in potential data utility. This article focuses on this problem and proposes a new utility‐aware anonymization model (u‐Mondrian). Experimental results have shown that u‐Mondrian presents an acceptable solution to the upper bound problem, increases total data utility and presents higher data utility than Mondrian for different partitioning strategies and datasets.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cpe.6808</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2316-7893</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2022-05, Vol.34 (10), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2647531921 |
source | Wiley |
subjects | Algorithms anonymization Model accuracy Privacy privacy preserving data publishing Publishing Upper bounds utility‐aware model |
title | A new utility‐aware anonymization model for privacy preserving data publishing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20utility%E2%80%90aware%20anonymization%20model%20for%20privacy%20preserving%20data%20publishing&rft.jtitle=Concurrency%20and%20computation&rft.au=Canbay,%20Yavuz&rft.date=2022-05-01&rft.volume=34&rft.issue=10&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6808&rft_dat=%3Cproquest_cross%3E2647531921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647531921&rft_id=info:pmid/&rfr_iscdi=true |