Loading…

A new utility‐aware anonymization model for privacy preserving data publishing

Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving a...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation 2022-05, Vol.34 (10), p.n/a
Main Authors: Canbay, Yavuz, Sagiroglu, Seref, Vural, Yilmaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3
cites cdi_FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3
container_end_page n/a
container_issue 10
container_start_page
container_title Concurrency and computation
container_volume 34
creator Canbay, Yavuz
Sagiroglu, Seref
Vural, Yilmaz
description Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving approach, helps hiding the identities of data subjects and also provides data utility. Since data utility is effective on the accuracy of analysis model, new anonymization algorithms to improve data utility are always required. Mondrian is one of the near‐optimal anonymization models that presents high data utility and is frequently used for PPDP. However, the upper bound problem of Mondrian causes a decrease in potential data utility. This article focuses on this problem and proposes a new utility‐aware anonymization model (u‐Mondrian). Experimental results have shown that u‐Mondrian presents an acceptable solution to the upper bound problem, increases total data utility and presents higher data utility than Mondrian for different partitioning strategies and datasets.
doi_str_mv 10.1002/cpe.6808
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647531921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647531921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWKvgIwS8eNmaj900eyylfkDBHvQc0uyspmw3a7Lbsp58BJ_RJzFrxZuH4T8DP2aYH0KXlEwoIezGNDARksgjNKIZZwkRPD3-65k4RWchbAihlHA6QqsZrmGPu9ZWtu2_Pj71XnvAunZ1v7XvurWuxltXQIVL53Hj7U6bPiYE8Dtbv-BCtxo33bqy4TXO5-ik1FWAi98co-fbxdP8Plk-3j3MZ8vEsJzLZM1LXlJpOGTMDFVQASQlbGqkZJxxYpjMAATINOOlLFIhilxmaSlyZoTmY3R12Nt499ZBaNXGdb6OJxUT6TTjNGc0UtcHyngXgodSxQ-22veKEjX4UtGXGnxFNDmge1tB_y-n5qvFD_8NNRlsow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647531921</pqid></control><display><type>article</type><title>A new utility‐aware anonymization model for privacy preserving data publishing</title><source>Wiley</source><creator>Canbay, Yavuz ; Sagiroglu, Seref ; Vural, Yilmaz</creator><creatorcontrib>Canbay, Yavuz ; Sagiroglu, Seref ; Vural, Yilmaz</creatorcontrib><description>Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving approach, helps hiding the identities of data subjects and also provides data utility. Since data utility is effective on the accuracy of analysis model, new anonymization algorithms to improve data utility are always required. Mondrian is one of the near‐optimal anonymization models that presents high data utility and is frequently used for PPDP. However, the upper bound problem of Mondrian causes a decrease in potential data utility. This article focuses on this problem and proposes a new utility‐aware anonymization model (u‐Mondrian). Experimental results have shown that u‐Mondrian presents an acceptable solution to the upper bound problem, increases total data utility and presents higher data utility than Mondrian for different partitioning strategies and datasets.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6808</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; anonymization ; Model accuracy ; Privacy ; privacy preserving data publishing ; Publishing ; Upper bounds ; utility‐aware model</subject><ispartof>Concurrency and computation, 2022-05, Vol.34 (10), p.n/a</ispartof><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3</citedby><cites>FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3</cites><orcidid>0000-0003-2316-7893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Canbay, Yavuz</creatorcontrib><creatorcontrib>Sagiroglu, Seref</creatorcontrib><creatorcontrib>Vural, Yilmaz</creatorcontrib><title>A new utility‐aware anonymization model for privacy preserving data publishing</title><title>Concurrency and computation</title><description>Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving approach, helps hiding the identities of data subjects and also provides data utility. Since data utility is effective on the accuracy of analysis model, new anonymization algorithms to improve data utility are always required. Mondrian is one of the near‐optimal anonymization models that presents high data utility and is frequently used for PPDP. However, the upper bound problem of Mondrian causes a decrease in potential data utility. This article focuses on this problem and proposes a new utility‐aware anonymization model (u‐Mondrian). Experimental results have shown that u‐Mondrian presents an acceptable solution to the upper bound problem, increases total data utility and presents higher data utility than Mondrian for different partitioning strategies and datasets.</description><subject>Algorithms</subject><subject>anonymization</subject><subject>Model accuracy</subject><subject>Privacy</subject><subject>privacy preserving data publishing</subject><subject>Publishing</subject><subject>Upper bounds</subject><subject>utility‐aware model</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQx4MoWKvgIwS8eNmaj900eyylfkDBHvQc0uyspmw3a7Lbsp58BJ_RJzFrxZuH4T8DP2aYH0KXlEwoIezGNDARksgjNKIZZwkRPD3-65k4RWchbAihlHA6QqsZrmGPu9ZWtu2_Pj71XnvAunZ1v7XvurWuxltXQIVL53Hj7U6bPiYE8Dtbv-BCtxo33bqy4TXO5-ik1FWAi98co-fbxdP8Plk-3j3MZ8vEsJzLZM1LXlJpOGTMDFVQASQlbGqkZJxxYpjMAATINOOlLFIhilxmaSlyZoTmY3R12Nt499ZBaNXGdb6OJxUT6TTjNGc0UtcHyngXgodSxQ-22veKEjX4UtGXGnxFNDmge1tB_y-n5qvFD_8NNRlsow</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Canbay, Yavuz</creator><creator>Sagiroglu, Seref</creator><creator>Vural, Yilmaz</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2316-7893</orcidid></search><sort><creationdate>20220501</creationdate><title>A new utility‐aware anonymization model for privacy preserving data publishing</title><author>Canbay, Yavuz ; Sagiroglu, Seref ; Vural, Yilmaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>anonymization</topic><topic>Model accuracy</topic><topic>Privacy</topic><topic>privacy preserving data publishing</topic><topic>Publishing</topic><topic>Upper bounds</topic><topic>utility‐aware model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canbay, Yavuz</creatorcontrib><creatorcontrib>Sagiroglu, Seref</creatorcontrib><creatorcontrib>Vural, Yilmaz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canbay, Yavuz</au><au>Sagiroglu, Seref</au><au>Vural, Yilmaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new utility‐aware anonymization model for privacy preserving data publishing</atitle><jtitle>Concurrency and computation</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>34</volume><issue>10</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Most of data in various forms contain sensitive information about individuals and so publishing such data might violate privacy. Privacy preserving data publishing (PPDP) is an essential for publishing useful data while preserving privacy. Anonymization, which is a utility based privacy preserving approach, helps hiding the identities of data subjects and also provides data utility. Since data utility is effective on the accuracy of analysis model, new anonymization algorithms to improve data utility are always required. Mondrian is one of the near‐optimal anonymization models that presents high data utility and is frequently used for PPDP. However, the upper bound problem of Mondrian causes a decrease in potential data utility. This article focuses on this problem and proposes a new utility‐aware anonymization model (u‐Mondrian). Experimental results have shown that u‐Mondrian presents an acceptable solution to the upper bound problem, increases total data utility and presents higher data utility than Mondrian for different partitioning strategies and datasets.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cpe.6808</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2316-7893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2022-05, Vol.34 (10), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2647531921
source Wiley
subjects Algorithms
anonymization
Model accuracy
Privacy
privacy preserving data publishing
Publishing
Upper bounds
utility‐aware model
title A new utility‐aware anonymization model for privacy preserving data publishing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20utility%E2%80%90aware%20anonymization%20model%20for%20privacy%20preserving%20data%20publishing&rft.jtitle=Concurrency%20and%20computation&rft.au=Canbay,%20Yavuz&rft.date=2022-05-01&rft.volume=34&rft.issue=10&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6808&rft_dat=%3Cproquest_cross%3E2647531921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-b3f3f18c3e52ce52cd16e04027c8823230c285ee6e8453f8d466d9854f692c6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647531921&rft_id=info:pmid/&rfr_iscdi=true