Loading…

The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell

Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell...

Full description

Saved in:
Bibliographic Details
Published in:Plasmonics (Norwell, Mass.) Mass.), 2022-04, Vol.17 (2), p.581-595
Main Authors: Hajjiah, Ali, Badran, Hussein, Shehata, Nader, Omran, May, Kandas, Ishac
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-904dfed96f36330732d7e3dd4eafeae19246576ddf7f976a30cd9fefd54fa63
cites cdi_FETCH-LOGICAL-c315t-904dfed96f36330732d7e3dd4eafeae19246576ddf7f976a30cd9fefd54fa63
container_end_page 595
container_issue 2
container_start_page 581
container_title Plasmonics (Norwell, Mass.)
container_volume 17
creator Hajjiah, Ali
Badran, Hussein
Shehata, Nader
Omran, May
Kandas, Ishac
description Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis ( J loss ), and finally, the spectral photovoltaic output (SPV).
doi_str_mv 10.1007/s11468-021-01547-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647680074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647680074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-904dfed96f36330732d7e3dd4eafeae19246576ddf7f976a30cd9fefd54fa63</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhSdGE2v1BVyRuB6FgYHOsqn1JzHW2O4JgYuOTqECNbpz5Qv4hj6J1DG6c3XP4jvnJl9RHBJ8TDAWJ5EQxkclrkiJSc1E-bJVDEhdi5I0nG7_5rreLfZifMCYMcbZoHhf3AOaWgs6IW_RaZtjAJfQ-BZdK-djCmud1gEi8g6lDM9WqdWqQzcQrA9L5TRsmrNwp1yrP98-Lp3vM7pQXWtgQ_rn-NgmQHNYtto7kzd9QHPfqYAm0HX7xY5VXYSDnzss5mfTxeSivJqdX07GV6WmpE5lg5mxYBpuKacUC1oZAdQYBsqCAtJUjNeCG2OFbQRXFGvTWLCmZlZxOiyO-tVV8E9riEk--HVw-aGsOBN8lFWyTFU9pYOPMYCVq9AuVXiVBMuNbdnbltm2_LYtX3KJ9qWYYXcH4W_6n9YXG9iGpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647680074</pqid></control><display><type>article</type><title>The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell</title><source>Springer Nature</source><creator>Hajjiah, Ali ; Badran, Hussein ; Shehata, Nader ; Omran, May ; Kandas, Ishac</creator><creatorcontrib>Hajjiah, Ali ; Badran, Hussein ; Shehata, Nader ; Omran, May ; Kandas, Ishac</creatorcontrib><description>Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis ( J loss ), and finally, the spectral photovoltaic output (SPV).</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-021-01547-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorptance ; Absorptivity ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Broadband ; Chemistry ; Chemistry and Materials Science ; Current density ; Effective medium theory ; Mathematical models ; Nanostructure ; Nanotechnology ; Perovskites ; Photovoltaic cells ; Refractivity ; Solar cells ; Transfer matrices</subject><ispartof>Plasmonics (Norwell, Mass.), 2022-04, Vol.17 (2), p.581-595</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-904dfed96f36330732d7e3dd4eafeae19246576ddf7f976a30cd9fefd54fa63</citedby><cites>FETCH-LOGICAL-c315t-904dfed96f36330732d7e3dd4eafeae19246576ddf7f976a30cd9fefd54fa63</cites><orcidid>0000-0002-9736-7372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hajjiah, Ali</creatorcontrib><creatorcontrib>Badran, Hussein</creatorcontrib><creatorcontrib>Shehata, Nader</creatorcontrib><creatorcontrib>Omran, May</creatorcontrib><creatorcontrib>Kandas, Ishac</creatorcontrib><title>The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis ( J loss ), and finally, the spectral photovoltaic output (SPV).</description><subject>Absorptance</subject><subject>Absorptivity</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Broadband</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Effective medium theory</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Refractivity</subject><subject>Solar cells</subject><subject>Transfer matrices</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhSdGE2v1BVyRuB6FgYHOsqn1JzHW2O4JgYuOTqECNbpz5Qv4hj6J1DG6c3XP4jvnJl9RHBJ8TDAWJ5EQxkclrkiJSc1E-bJVDEhdi5I0nG7_5rreLfZifMCYMcbZoHhf3AOaWgs6IW_RaZtjAJfQ-BZdK-djCmud1gEi8g6lDM9WqdWqQzcQrA9L5TRsmrNwp1yrP98-Lp3vM7pQXWtgQ_rn-NgmQHNYtto7kzd9QHPfqYAm0HX7xY5VXYSDnzss5mfTxeSivJqdX07GV6WmpE5lg5mxYBpuKacUC1oZAdQYBsqCAtJUjNeCG2OFbQRXFGvTWLCmZlZxOiyO-tVV8E9riEk--HVw-aGsOBN8lFWyTFU9pYOPMYCVq9AuVXiVBMuNbdnbltm2_LYtX3KJ9qWYYXcH4W_6n9YXG9iGpQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Hajjiah, Ali</creator><creator>Badran, Hussein</creator><creator>Shehata, Nader</creator><creator>Omran, May</creator><creator>Kandas, Ishac</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9736-7372</orcidid></search><sort><creationdate>20220401</creationdate><title>The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell</title><author>Hajjiah, Ali ; Badran, Hussein ; Shehata, Nader ; Omran, May ; Kandas, Ishac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-904dfed96f36330732d7e3dd4eafeae19246576ddf7f976a30cd9fefd54fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorptance</topic><topic>Absorptivity</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Broadband</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Effective medium theory</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Refractivity</topic><topic>Solar cells</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajjiah, Ali</creatorcontrib><creatorcontrib>Badran, Hussein</creatorcontrib><creatorcontrib>Shehata, Nader</creatorcontrib><creatorcontrib>Omran, May</creatorcontrib><creatorcontrib>Kandas, Ishac</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajjiah, Ali</au><au>Badran, Hussein</au><au>Shehata, Nader</au><au>Omran, May</au><au>Kandas, Ishac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>17</volume><issue>2</issue><spage>581</spage><epage>595</epage><pages>581-595</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis ( J loss ), and finally, the spectral photovoltaic output (SPV).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-021-01547-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9736-7372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1557-1955
ispartof Plasmonics (Norwell, Mass.), 2022-04, Vol.17 (2), p.581-595
issn 1557-1955
1557-1963
language eng
recordid cdi_proquest_journals_2647680074
source Springer Nature
subjects Absorptance
Absorptivity
Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Broadband
Chemistry
Chemistry and Materials Science
Current density
Effective medium theory
Mathematical models
Nanostructure
Nanotechnology
Perovskites
Photovoltaic cells
Refractivity
Solar cells
Transfer matrices
title The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Different%20AR%20Nanostructures%20on%20the%20Optical%20Performance%20of%20Organic%E2%80%93Inorganic%20Halide%20Perovskite%20Semiconductor%20Solar%20Cell&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Hajjiah,%20Ali&rft.date=2022-04-01&rft.volume=17&rft.issue=2&rft.spage=581&rft.epage=595&rft.pages=581-595&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-021-01547-x&rft_dat=%3Cproquest_cross%3E2647680074%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-904dfed96f36330732d7e3dd4eafeae19246576ddf7f976a30cd9fefd54fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647680074&rft_id=info:pmid/&rfr_iscdi=true