Loading…

Valley Hall edge solitons in honeycomb lattice with an armchair-type domain wall

Thanks to the topological protection, photonic topological edge states can move along the edges of photonic crystals without radiating into the bulk or reflecting when encountering disorders or defects. The valley Hall effect helps obtain topological edge states without breaking the time-reversal sy...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2022-04, Vol.108 (2), p.1573-1583
Main Authors: Tang, Qian, Belić, Milivoj R., Zhang, Yi Qi, Zhang, Yan Peng, Li, Yong Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ad621c4c839728995af11e5cbbda1dc785a4c2a880f636cd2b1592ce213c1ebc3
cites cdi_FETCH-LOGICAL-c319t-ad621c4c839728995af11e5cbbda1dc785a4c2a880f636cd2b1592ce213c1ebc3
container_end_page 1583
container_issue 2
container_start_page 1573
container_title Nonlinear dynamics
container_volume 108
creator Tang, Qian
Belić, Milivoj R.
Zhang, Yi Qi
Zhang, Yan Peng
Li, Yong Dong
description Thanks to the topological protection, photonic topological edge states can move along the edges of photonic crystals without radiating into the bulk or reflecting when encountering disorders or defects. The valley Hall effect helps obtain topological edge states without breaking the time-reversal symmetry but breaking the inversion symmetry of the system, which means that the valley Hall edge state is independent of the magnetic field. Thus, with two inversion symmetry-broken photonic lattices, a domain wall that supports valley Hall edge states can be established. Generally, the zigzag-type domain wall is likely to support topological valley Hall edge states. However, in this work we investigate the valley Hall edge state on the armchair-type domain wall in a honeycomb lattice and demonstrate that armchair-type valley Hall edge states can also circumvent sharp corners with tiny reflection. The armchair-type domain wall, with the refractive index change being staggered, supports not only the bright but also the dark valley Hall edge solitons, and even the vector valley Hall edge solitons. Our results deepen the understanding of topological valley Hall edge states on different types of domain walls and may find applications in developing techniques of manipulating light fields for fabricating on-chip optical functional devices.
doi_str_mv 10.1007/s11071-021-07193-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647946642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647946642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ad621c4c839728995af11e5cbbda1dc785a4c2a880f636cd2b1592ce213c1ebc3</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAczRf0qbNUYY6YaAHld1CmqZbR9vMJGP03xut4M3Dx3t53veDB6FroLdAaXEXAGgBhLJ0BUhOxAmaQV5wwoRcn6IZlSwjVNL1OboIYUcp5YyWM_T6obvOjniZAtt6Y3FwXRvdEHA74K0b7GhcX-FOx9gai49t3GI9YO17s9WtJ3HcW1y7Xif8mEYu0Vmju2CvfnOO3h8f3hZLsnp5el7cr4jhICPRtWBgMlNyWbBSylw3ADY3VVVrqE1R5jozTJclbQQXpmYV5JIZy4AbsJXhc3Qz7e69-zzYENXOHfyQXiomskJmQmQsUWyijHcheNuovW977UcFVH2bU5M5lcypH3NKpBKfSiHBw8b6v-l_Wl9333Fz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647946642</pqid></control><display><type>article</type><title>Valley Hall edge solitons in honeycomb lattice with an armchair-type domain wall</title><source>Springer Nature</source><creator>Tang, Qian ; Belić, Milivoj R. ; Zhang, Yi Qi ; Zhang, Yan Peng ; Li, Yong Dong</creator><creatorcontrib>Tang, Qian ; Belić, Milivoj R. ; Zhang, Yi Qi ; Zhang, Yan Peng ; Li, Yong Dong</creatorcontrib><description>Thanks to the topological protection, photonic topological edge states can move along the edges of photonic crystals without radiating into the bulk or reflecting when encountering disorders or defects. The valley Hall effect helps obtain topological edge states without breaking the time-reversal symmetry but breaking the inversion symmetry of the system, which means that the valley Hall edge state is independent of the magnetic field. Thus, with two inversion symmetry-broken photonic lattices, a domain wall that supports valley Hall edge states can be established. Generally, the zigzag-type domain wall is likely to support topological valley Hall edge states. However, in this work we investigate the valley Hall edge state on the armchair-type domain wall in a honeycomb lattice and demonstrate that armchair-type valley Hall edge states can also circumvent sharp corners with tiny reflection. The armchair-type domain wall, with the refractive index change being staggered, supports not only the bright but also the dark valley Hall edge solitons, and even the vector valley Hall edge solitons. Our results deepen the understanding of topological valley Hall edge states on different types of domain walls and may find applications in developing techniques of manipulating light fields for fabricating on-chip optical functional devices.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-07193-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Crystal defects ; Domain walls ; Dynamical Systems ; Engineering ; Hall effect ; Lattices ; Mechanical Engineering ; Original Paper ; Photonic crystals ; Refractivity ; Solitary waves ; Symmetry ; Topology ; Valleys ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-04, Vol.108 (2), p.1573-1583</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ad621c4c839728995af11e5cbbda1dc785a4c2a880f636cd2b1592ce213c1ebc3</citedby><cites>FETCH-LOGICAL-c319t-ad621c4c839728995af11e5cbbda1dc785a4c2a880f636cd2b1592ce213c1ebc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tang, Qian</creatorcontrib><creatorcontrib>Belić, Milivoj R.</creatorcontrib><creatorcontrib>Zhang, Yi Qi</creatorcontrib><creatorcontrib>Zhang, Yan Peng</creatorcontrib><creatorcontrib>Li, Yong Dong</creatorcontrib><title>Valley Hall edge solitons in honeycomb lattice with an armchair-type domain wall</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Thanks to the topological protection, photonic topological edge states can move along the edges of photonic crystals without radiating into the bulk or reflecting when encountering disorders or defects. The valley Hall effect helps obtain topological edge states without breaking the time-reversal symmetry but breaking the inversion symmetry of the system, which means that the valley Hall edge state is independent of the magnetic field. Thus, with two inversion symmetry-broken photonic lattices, a domain wall that supports valley Hall edge states can be established. Generally, the zigzag-type domain wall is likely to support topological valley Hall edge states. However, in this work we investigate the valley Hall edge state on the armchair-type domain wall in a honeycomb lattice and demonstrate that armchair-type valley Hall edge states can also circumvent sharp corners with tiny reflection. The armchair-type domain wall, with the refractive index change being staggered, supports not only the bright but also the dark valley Hall edge solitons, and even the vector valley Hall edge solitons. Our results deepen the understanding of topological valley Hall edge states on different types of domain walls and may find applications in developing techniques of manipulating light fields for fabricating on-chip optical functional devices.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Crystal defects</subject><subject>Domain walls</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Hall effect</subject><subject>Lattices</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Photonic crystals</subject><subject>Refractivity</subject><subject>Solitary waves</subject><subject>Symmetry</subject><subject>Topology</subject><subject>Valleys</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKd_wFPAczRf0qbNUYY6YaAHld1CmqZbR9vMJGP03xut4M3Dx3t53veDB6FroLdAaXEXAGgBhLJ0BUhOxAmaQV5wwoRcn6IZlSwjVNL1OboIYUcp5YyWM_T6obvOjniZAtt6Y3FwXRvdEHA74K0b7GhcX-FOx9gai49t3GI9YO17s9WtJ3HcW1y7Xif8mEYu0Vmju2CvfnOO3h8f3hZLsnp5el7cr4jhICPRtWBgMlNyWbBSylw3ADY3VVVrqE1R5jozTJclbQQXpmYV5JIZy4AbsJXhc3Qz7e69-zzYENXOHfyQXiomskJmQmQsUWyijHcheNuovW977UcFVH2bU5M5lcypH3NKpBKfSiHBw8b6v-l_Wl9333Fz</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Tang, Qian</creator><creator>Belić, Milivoj R.</creator><creator>Zhang, Yi Qi</creator><creator>Zhang, Yan Peng</creator><creator>Li, Yong Dong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220401</creationdate><title>Valley Hall edge solitons in honeycomb lattice with an armchair-type domain wall</title><author>Tang, Qian ; Belić, Milivoj R. ; Zhang, Yi Qi ; Zhang, Yan Peng ; Li, Yong Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ad621c4c839728995af11e5cbbda1dc785a4c2a880f636cd2b1592ce213c1ebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Crystal defects</topic><topic>Domain walls</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Hall effect</topic><topic>Lattices</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Photonic crystals</topic><topic>Refractivity</topic><topic>Solitary waves</topic><topic>Symmetry</topic><topic>Topology</topic><topic>Valleys</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Qian</creatorcontrib><creatorcontrib>Belić, Milivoj R.</creatorcontrib><creatorcontrib>Zhang, Yi Qi</creatorcontrib><creatorcontrib>Zhang, Yan Peng</creatorcontrib><creatorcontrib>Li, Yong Dong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Qian</au><au>Belić, Milivoj R.</au><au>Zhang, Yi Qi</au><au>Zhang, Yan Peng</au><au>Li, Yong Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valley Hall edge solitons in honeycomb lattice with an armchair-type domain wall</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>108</volume><issue>2</issue><spage>1573</spage><epage>1583</epage><pages>1573-1583</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Thanks to the topological protection, photonic topological edge states can move along the edges of photonic crystals without radiating into the bulk or reflecting when encountering disorders or defects. The valley Hall effect helps obtain topological edge states without breaking the time-reversal symmetry but breaking the inversion symmetry of the system, which means that the valley Hall edge state is independent of the magnetic field. Thus, with two inversion symmetry-broken photonic lattices, a domain wall that supports valley Hall edge states can be established. Generally, the zigzag-type domain wall is likely to support topological valley Hall edge states. However, in this work we investigate the valley Hall edge state on the armchair-type domain wall in a honeycomb lattice and demonstrate that armchair-type valley Hall edge states can also circumvent sharp corners with tiny reflection. The armchair-type domain wall, with the refractive index change being staggered, supports not only the bright but also the dark valley Hall edge solitons, and even the vector valley Hall edge solitons. Our results deepen the understanding of topological valley Hall edge states on different types of domain walls and may find applications in developing techniques of manipulating light fields for fabricating on-chip optical functional devices.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-07193-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2022-04, Vol.108 (2), p.1573-1583
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2647946642
source Springer Nature
subjects Automotive Engineering
Classical Mechanics
Control
Crystal defects
Domain walls
Dynamical Systems
Engineering
Hall effect
Lattices
Mechanical Engineering
Original Paper
Photonic crystals
Refractivity
Solitary waves
Symmetry
Topology
Valleys
Vibration
title Valley Hall edge solitons in honeycomb lattice with an armchair-type domain wall
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valley%20Hall%20edge%20solitons%20in%20honeycomb%20lattice%20with%20an%20armchair-type%20domain%20wall&rft.jtitle=Nonlinear%20dynamics&rft.au=Tang,%20Qian&rft.date=2022-04-01&rft.volume=108&rft.issue=2&rft.spage=1573&rft.epage=1583&rft.pages=1573-1583&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-07193-6&rft_dat=%3Cproquest_cross%3E2647946642%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ad621c4c839728995af11e5cbbda1dc785a4c2a880f636cd2b1592ce213c1ebc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647946642&rft_id=info:pmid/&rfr_iscdi=true