Loading…

κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells

In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2022-06, Vol.139 (22), p.n/a
Main Authors: Zakaria, Zulfirdaus, Kamarudin, Siti Kartom, Kudus, Muhammad Helmi Abdul, Wahid, Khairul Anuar Abd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3
cites cdi_FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3
container_end_page n/a
container_issue 22
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Zakaria, Zulfirdaus
Kamarudin, Siti Kartom
Kudus, Muhammad Helmi Abdul
Wahid, Khairul Anuar Abd
description In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO biopolymer composite membrane has been successfully fabricated. The fabrication of the κ‐car/PVA‐GO biopolymer composite membrane effectively increases the proton conductivity and ethanol barrier. The high proton conductivity is achieved 2.67 × 10−3 S/cm and the reduced permeability of ethanol 1.95 × 10−7 cm2/s at 30°C. Besides, PVA blend modification and the introduction of GO improve the mechanical properties of the κ‐car biopolymer. The maximum power density of the passive DEFCs is 3.84 mW/cm2 using the κ‐car/PVA‐GO biopolymer composite membrane, which is higher than the Nafion membrane, which achieved only 2.02 mW/cm2 in a similar operating condition of passive DEFCs at 30°C. Furthermore, the κ‐car/PVA‐GO biopolymer composite membrane could be maintained in a fuel cell atmosphere for 1000 h. According to our review of the literature, there are no studies have used the carrageenan‐based membrane in the application of passive DEFCs. This is a promising biopolymer electrolyte membrane for use in passive DEFCs. ‐ κ‐Car/PVA‐GO biopolymer composite membrane was well‐synthesized. ‐ The presence of functional groups successfully increased ionic conductivity. ‐ Introduction of GO and three‐networking dimension reduced ethanol permeability. ‐ The modification of PVA and GO within the κ‐Car biopolymer truly improved the properties of new PEMs.
doi_str_mv 10.1002/app.52256
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648045709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648045709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3</originalsourceid><addsrcrecordid>eNp1kD1OxDAQhS0EEstCwQ0sUVFk13Z-XSLEn4QEBdTRxJnseuXEwc4C6TgCFYfhEByCk-BlaammeN-8mfcIOeZsxhkTc-j7WSpEmu2QCWcyj5JMFLtkEjQeFVKm--TA-xVjnKcsm5CPr8_vt3cFzsECsYNu3lszPutuNBSMsktrgr5w0C-xQ2pfdY200nZDteiosm1vvR6QtthWDgLTWEfDG0YrGLTtqG0oaBdcKocwLHW3oD14r5-R1tqhGigOS-isoc0aDVVojD8kew0Yj0d_c0oeLy8ezq-j27urm_Oz20gJmWdRJYs8jusYclYnqkqSgiGirFMQIs5VxlmRpXEmsBZSsBAaq1ymPAdUSaWwjqfkZOvbO_u0Rj-UK7t2XThZiiy4JWnOZKBOt5Ry1nuHTdk73YIbS87KTe1lyFv-1h7Y-ZZ90QbH_8Hy7P5-u_EDH_uLkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648045709</pqid></control><display><type>article</type><title>κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells</title><source>Wiley</source><creator>Zakaria, Zulfirdaus ; Kamarudin, Siti Kartom ; Kudus, Muhammad Helmi Abdul ; Wahid, Khairul Anuar Abd</creator><creatorcontrib>Zakaria, Zulfirdaus ; Kamarudin, Siti Kartom ; Kudus, Muhammad Helmi Abdul ; Wahid, Khairul Anuar Abd</creatorcontrib><description>In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO biopolymer composite membrane has been successfully fabricated. The fabrication of the κ‐car/PVA‐GO biopolymer composite membrane effectively increases the proton conductivity and ethanol barrier. The high proton conductivity is achieved 2.67 × 10−3 S/cm and the reduced permeability of ethanol 1.95 × 10−7 cm2/s at 30°C. Besides, PVA blend modification and the introduction of GO improve the mechanical properties of the κ‐car biopolymer. The maximum power density of the passive DEFCs is 3.84 mW/cm2 using the κ‐car/PVA‐GO biopolymer composite membrane, which is higher than the Nafion membrane, which achieved only 2.02 mW/cm2 in a similar operating condition of passive DEFCs at 30°C. Furthermore, the κ‐car/PVA‐GO biopolymer composite membrane could be maintained in a fuel cell atmosphere for 1000 h. According to our review of the literature, there are no studies have used the carrageenan‐based membrane in the application of passive DEFCs. This is a promising biopolymer electrolyte membrane for use in passive DEFCs. ‐ κ‐Car/PVA‐GO biopolymer composite membrane was well‐synthesized. ‐ The presence of functional groups successfully increased ionic conductivity. ‐ Introduction of GO and three‐networking dimension reduced ethanol permeability. ‐ The modification of PVA and GO within the κ‐Car biopolymer truly improved the properties of new PEMs.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.52256</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>batteries and fuel cells ; Biopolymers ; Carrageenan ; Electrolytic cells ; Ethanol ; Fuel cells ; Graphene ; Literature reviews ; Materials science ; Maximum power density ; Mechanical properties ; Membranes ; Polymers ; Polyvinyl alcohol ; Protons ; renewable polymers</subject><ispartof>Journal of applied polymer science, 2022-06, Vol.139 (22), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3</citedby><cites>FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3</cites><orcidid>0000-0003-3292-8009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zakaria, Zulfirdaus</creatorcontrib><creatorcontrib>Kamarudin, Siti Kartom</creatorcontrib><creatorcontrib>Kudus, Muhammad Helmi Abdul</creatorcontrib><creatorcontrib>Wahid, Khairul Anuar Abd</creatorcontrib><title>κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells</title><title>Journal of applied polymer science</title><description>In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO biopolymer composite membrane has been successfully fabricated. The fabrication of the κ‐car/PVA‐GO biopolymer composite membrane effectively increases the proton conductivity and ethanol barrier. The high proton conductivity is achieved 2.67 × 10−3 S/cm and the reduced permeability of ethanol 1.95 × 10−7 cm2/s at 30°C. Besides, PVA blend modification and the introduction of GO improve the mechanical properties of the κ‐car biopolymer. The maximum power density of the passive DEFCs is 3.84 mW/cm2 using the κ‐car/PVA‐GO biopolymer composite membrane, which is higher than the Nafion membrane, which achieved only 2.02 mW/cm2 in a similar operating condition of passive DEFCs at 30°C. Furthermore, the κ‐car/PVA‐GO biopolymer composite membrane could be maintained in a fuel cell atmosphere for 1000 h. According to our review of the literature, there are no studies have used the carrageenan‐based membrane in the application of passive DEFCs. This is a promising biopolymer electrolyte membrane for use in passive DEFCs. ‐ κ‐Car/PVA‐GO biopolymer composite membrane was well‐synthesized. ‐ The presence of functional groups successfully increased ionic conductivity. ‐ Introduction of GO and three‐networking dimension reduced ethanol permeability. ‐ The modification of PVA and GO within the κ‐Car biopolymer truly improved the properties of new PEMs.</description><subject>batteries and fuel cells</subject><subject>Biopolymers</subject><subject>Carrageenan</subject><subject>Electrolytic cells</subject><subject>Ethanol</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>Literature reviews</subject><subject>Materials science</subject><subject>Maximum power density</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Protons</subject><subject>renewable polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1OxDAQhS0EEstCwQ0sUVFk13Z-XSLEn4QEBdTRxJnseuXEwc4C6TgCFYfhEByCk-BlaammeN-8mfcIOeZsxhkTc-j7WSpEmu2QCWcyj5JMFLtkEjQeFVKm--TA-xVjnKcsm5CPr8_vt3cFzsECsYNu3lszPutuNBSMsktrgr5w0C-xQ2pfdY200nZDteiosm1vvR6QtthWDgLTWEfDG0YrGLTtqG0oaBdcKocwLHW3oD14r5-R1tqhGigOS-isoc0aDVVojD8kew0Yj0d_c0oeLy8ezq-j27urm_Oz20gJmWdRJYs8jusYclYnqkqSgiGirFMQIs5VxlmRpXEmsBZSsBAaq1ymPAdUSaWwjqfkZOvbO_u0Rj-UK7t2XThZiiy4JWnOZKBOt5Ry1nuHTdk73YIbS87KTe1lyFv-1h7Y-ZZ90QbH_8Hy7P5-u_EDH_uLkA</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Zakaria, Zulfirdaus</creator><creator>Kamarudin, Siti Kartom</creator><creator>Kudus, Muhammad Helmi Abdul</creator><creator>Wahid, Khairul Anuar Abd</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3292-8009</orcidid></search><sort><creationdate>20220610</creationdate><title>κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells</title><author>Zakaria, Zulfirdaus ; Kamarudin, Siti Kartom ; Kudus, Muhammad Helmi Abdul ; Wahid, Khairul Anuar Abd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>batteries and fuel cells</topic><topic>Biopolymers</topic><topic>Carrageenan</topic><topic>Electrolytic cells</topic><topic>Ethanol</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>Literature reviews</topic><topic>Materials science</topic><topic>Maximum power density</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Protons</topic><topic>renewable polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakaria, Zulfirdaus</creatorcontrib><creatorcontrib>Kamarudin, Siti Kartom</creatorcontrib><creatorcontrib>Kudus, Muhammad Helmi Abdul</creatorcontrib><creatorcontrib>Wahid, Khairul Anuar Abd</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakaria, Zulfirdaus</au><au>Kamarudin, Siti Kartom</au><au>Kudus, Muhammad Helmi Abdul</au><au>Wahid, Khairul Anuar Abd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-06-10</date><risdate>2022</risdate><volume>139</volume><issue>22</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO biopolymer composite membrane has been successfully fabricated. The fabrication of the κ‐car/PVA‐GO biopolymer composite membrane effectively increases the proton conductivity and ethanol barrier. The high proton conductivity is achieved 2.67 × 10−3 S/cm and the reduced permeability of ethanol 1.95 × 10−7 cm2/s at 30°C. Besides, PVA blend modification and the introduction of GO improve the mechanical properties of the κ‐car biopolymer. The maximum power density of the passive DEFCs is 3.84 mW/cm2 using the κ‐car/PVA‐GO biopolymer composite membrane, which is higher than the Nafion membrane, which achieved only 2.02 mW/cm2 in a similar operating condition of passive DEFCs at 30°C. Furthermore, the κ‐car/PVA‐GO biopolymer composite membrane could be maintained in a fuel cell atmosphere for 1000 h. According to our review of the literature, there are no studies have used the carrageenan‐based membrane in the application of passive DEFCs. This is a promising biopolymer electrolyte membrane for use in passive DEFCs. ‐ κ‐Car/PVA‐GO biopolymer composite membrane was well‐synthesized. ‐ The presence of functional groups successfully increased ionic conductivity. ‐ Introduction of GO and three‐networking dimension reduced ethanol permeability. ‐ The modification of PVA and GO within the κ‐Car biopolymer truly improved the properties of new PEMs.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.52256</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3292-8009</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-06, Vol.139 (22), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2648045709
source Wiley
subjects batteries and fuel cells
Biopolymers
Carrageenan
Electrolytic cells
Ethanol
Fuel cells
Graphene
Literature reviews
Materials science
Maximum power density
Mechanical properties
Membranes
Polymers
Polyvinyl alcohol
Protons
renewable polymers
title κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%BA%E2%80%90carrageenan/polyvinyl%20alcohol%E2%80%90graphene%20oxide%20biopolymer%20composite%20membrane%20for%20application%20of%20air%E2%80%90breathing%20passive%20direct%20ethanol%20fuel%20cells&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zakaria,%20Zulfirdaus&rft.date=2022-06-10&rft.volume=139&rft.issue=22&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.52256&rft_dat=%3Cproquest_cross%3E2648045709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648045709&rft_id=info:pmid/&rfr_iscdi=true