Loading…
κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells
In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO...
Saved in:
Published in: | Journal of applied polymer science 2022-06, Vol.139 (22), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3 |
container_end_page | n/a |
container_issue | 22 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 139 |
creator | Zakaria, Zulfirdaus Kamarudin, Siti Kartom Kudus, Muhammad Helmi Abdul Wahid, Khairul Anuar Abd |
description | In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO biopolymer composite membrane has been successfully fabricated. The fabrication of the κ‐car/PVA‐GO biopolymer composite membrane effectively increases the proton conductivity and ethanol barrier. The high proton conductivity is achieved 2.67 × 10−3 S/cm and the reduced permeability of ethanol 1.95 × 10−7 cm2/s at 30°C. Besides, PVA blend modification and the introduction of GO improve the mechanical properties of the κ‐car biopolymer. The maximum power density of the passive DEFCs is 3.84 mW/cm2 using the κ‐car/PVA‐GO biopolymer composite membrane, which is higher than the Nafion membrane, which achieved only 2.02 mW/cm2 in a similar operating condition of passive DEFCs at 30°C. Furthermore, the κ‐car/PVA‐GO biopolymer composite membrane could be maintained in a fuel cell atmosphere for 1000 h. According to our review of the literature, there are no studies have used the carrageenan‐based membrane in the application of passive DEFCs. This is a promising biopolymer electrolyte membrane for use in passive DEFCs.
‐ κ‐Car/PVA‐GO biopolymer composite membrane was well‐synthesized.
‐ The presence of functional groups successfully increased ionic conductivity.
‐ Introduction of GO and three‐networking dimension reduced ethanol permeability.
‐ The modification of PVA and GO within the κ‐Car biopolymer truly improved the properties of new PEMs. |
doi_str_mv | 10.1002/app.52256 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648045709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648045709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3</originalsourceid><addsrcrecordid>eNp1kD1OxDAQhS0EEstCwQ0sUVFk13Z-XSLEn4QEBdTRxJnseuXEwc4C6TgCFYfhEByCk-BlaammeN-8mfcIOeZsxhkTc-j7WSpEmu2QCWcyj5JMFLtkEjQeFVKm--TA-xVjnKcsm5CPr8_vt3cFzsECsYNu3lszPutuNBSMsktrgr5w0C-xQ2pfdY200nZDteiosm1vvR6QtthWDgLTWEfDG0YrGLTtqG0oaBdcKocwLHW3oD14r5-R1tqhGigOS-isoc0aDVVojD8kew0Yj0d_c0oeLy8ezq-j27urm_Oz20gJmWdRJYs8jusYclYnqkqSgiGirFMQIs5VxlmRpXEmsBZSsBAaq1ymPAdUSaWwjqfkZOvbO_u0Rj-UK7t2XThZiiy4JWnOZKBOt5Ry1nuHTdk73YIbS87KTe1lyFv-1h7Y-ZZ90QbH_8Hy7P5-u_EDH_uLkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648045709</pqid></control><display><type>article</type><title>κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells</title><source>Wiley</source><creator>Zakaria, Zulfirdaus ; Kamarudin, Siti Kartom ; Kudus, Muhammad Helmi Abdul ; Wahid, Khairul Anuar Abd</creator><creatorcontrib>Zakaria, Zulfirdaus ; Kamarudin, Siti Kartom ; Kudus, Muhammad Helmi Abdul ; Wahid, Khairul Anuar Abd</creatorcontrib><description>In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO biopolymer composite membrane has been successfully fabricated. The fabrication of the κ‐car/PVA‐GO biopolymer composite membrane effectively increases the proton conductivity and ethanol barrier. The high proton conductivity is achieved 2.67 × 10−3 S/cm and the reduced permeability of ethanol 1.95 × 10−7 cm2/s at 30°C. Besides, PVA blend modification and the introduction of GO improve the mechanical properties of the κ‐car biopolymer. The maximum power density of the passive DEFCs is 3.84 mW/cm2 using the κ‐car/PVA‐GO biopolymer composite membrane, which is higher than the Nafion membrane, which achieved only 2.02 mW/cm2 in a similar operating condition of passive DEFCs at 30°C. Furthermore, the κ‐car/PVA‐GO biopolymer composite membrane could be maintained in a fuel cell atmosphere for 1000 h. According to our review of the literature, there are no studies have used the carrageenan‐based membrane in the application of passive DEFCs. This is a promising biopolymer electrolyte membrane for use in passive DEFCs.
‐ κ‐Car/PVA‐GO biopolymer composite membrane was well‐synthesized.
‐ The presence of functional groups successfully increased ionic conductivity.
‐ Introduction of GO and three‐networking dimension reduced ethanol permeability.
‐ The modification of PVA and GO within the κ‐Car biopolymer truly improved the properties of new PEMs.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.52256</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>batteries and fuel cells ; Biopolymers ; Carrageenan ; Electrolytic cells ; Ethanol ; Fuel cells ; Graphene ; Literature reviews ; Materials science ; Maximum power density ; Mechanical properties ; Membranes ; Polymers ; Polyvinyl alcohol ; Protons ; renewable polymers</subject><ispartof>Journal of applied polymer science, 2022-06, Vol.139 (22), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3</citedby><cites>FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3</cites><orcidid>0000-0003-3292-8009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zakaria, Zulfirdaus</creatorcontrib><creatorcontrib>Kamarudin, Siti Kartom</creatorcontrib><creatorcontrib>Kudus, Muhammad Helmi Abdul</creatorcontrib><creatorcontrib>Wahid, Khairul Anuar Abd</creatorcontrib><title>κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells</title><title>Journal of applied polymer science</title><description>In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO biopolymer composite membrane has been successfully fabricated. The fabrication of the κ‐car/PVA‐GO biopolymer composite membrane effectively increases the proton conductivity and ethanol barrier. The high proton conductivity is achieved 2.67 × 10−3 S/cm and the reduced permeability of ethanol 1.95 × 10−7 cm2/s at 30°C. Besides, PVA blend modification and the introduction of GO improve the mechanical properties of the κ‐car biopolymer. The maximum power density of the passive DEFCs is 3.84 mW/cm2 using the κ‐car/PVA‐GO biopolymer composite membrane, which is higher than the Nafion membrane, which achieved only 2.02 mW/cm2 in a similar operating condition of passive DEFCs at 30°C. Furthermore, the κ‐car/PVA‐GO biopolymer composite membrane could be maintained in a fuel cell atmosphere for 1000 h. According to our review of the literature, there are no studies have used the carrageenan‐based membrane in the application of passive DEFCs. This is a promising biopolymer electrolyte membrane for use in passive DEFCs.
‐ κ‐Car/PVA‐GO biopolymer composite membrane was well‐synthesized.
‐ The presence of functional groups successfully increased ionic conductivity.
‐ Introduction of GO and three‐networking dimension reduced ethanol permeability.
‐ The modification of PVA and GO within the κ‐Car biopolymer truly improved the properties of new PEMs.</description><subject>batteries and fuel cells</subject><subject>Biopolymers</subject><subject>Carrageenan</subject><subject>Electrolytic cells</subject><subject>Ethanol</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>Literature reviews</subject><subject>Materials science</subject><subject>Maximum power density</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Protons</subject><subject>renewable polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1OxDAQhS0EEstCwQ0sUVFk13Z-XSLEn4QEBdTRxJnseuXEwc4C6TgCFYfhEByCk-BlaammeN-8mfcIOeZsxhkTc-j7WSpEmu2QCWcyj5JMFLtkEjQeFVKm--TA-xVjnKcsm5CPr8_vt3cFzsECsYNu3lszPutuNBSMsktrgr5w0C-xQ2pfdY200nZDteiosm1vvR6QtthWDgLTWEfDG0YrGLTtqG0oaBdcKocwLHW3oD14r5-R1tqhGigOS-isoc0aDVVojD8kew0Yj0d_c0oeLy8ezq-j27urm_Oz20gJmWdRJYs8jusYclYnqkqSgiGirFMQIs5VxlmRpXEmsBZSsBAaq1ymPAdUSaWwjqfkZOvbO_u0Rj-UK7t2XThZiiy4JWnOZKBOt5Ry1nuHTdk73YIbS87KTe1lyFv-1h7Y-ZZ90QbH_8Hy7P5-u_EDH_uLkA</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Zakaria, Zulfirdaus</creator><creator>Kamarudin, Siti Kartom</creator><creator>Kudus, Muhammad Helmi Abdul</creator><creator>Wahid, Khairul Anuar Abd</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3292-8009</orcidid></search><sort><creationdate>20220610</creationdate><title>κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells</title><author>Zakaria, Zulfirdaus ; Kamarudin, Siti Kartom ; Kudus, Muhammad Helmi Abdul ; Wahid, Khairul Anuar Abd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>batteries and fuel cells</topic><topic>Biopolymers</topic><topic>Carrageenan</topic><topic>Electrolytic cells</topic><topic>Ethanol</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>Literature reviews</topic><topic>Materials science</topic><topic>Maximum power density</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Protons</topic><topic>renewable polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakaria, Zulfirdaus</creatorcontrib><creatorcontrib>Kamarudin, Siti Kartom</creatorcontrib><creatorcontrib>Kudus, Muhammad Helmi Abdul</creatorcontrib><creatorcontrib>Wahid, Khairul Anuar Abd</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakaria, Zulfirdaus</au><au>Kamarudin, Siti Kartom</au><au>Kudus, Muhammad Helmi Abdul</au><au>Wahid, Khairul Anuar Abd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-06-10</date><risdate>2022</risdate><volume>139</volume><issue>22</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>In this article, new biopolymer composite membranes based on κ‐carrageenan, polyvinyl alcohol and graphene oxide (designated as κ‐car/PVA‐GO) were synthesized by casting method for the application of passive direct ethanol fuel cell (DEFCs). FTIR, XRD, and FESEM analysis proved that the κ‐car/PVA‐GO biopolymer composite membrane has been successfully fabricated. The fabrication of the κ‐car/PVA‐GO biopolymer composite membrane effectively increases the proton conductivity and ethanol barrier. The high proton conductivity is achieved 2.67 × 10−3 S/cm and the reduced permeability of ethanol 1.95 × 10−7 cm2/s at 30°C. Besides, PVA blend modification and the introduction of GO improve the mechanical properties of the κ‐car biopolymer. The maximum power density of the passive DEFCs is 3.84 mW/cm2 using the κ‐car/PVA‐GO biopolymer composite membrane, which is higher than the Nafion membrane, which achieved only 2.02 mW/cm2 in a similar operating condition of passive DEFCs at 30°C. Furthermore, the κ‐car/PVA‐GO biopolymer composite membrane could be maintained in a fuel cell atmosphere for 1000 h. According to our review of the literature, there are no studies have used the carrageenan‐based membrane in the application of passive DEFCs. This is a promising biopolymer electrolyte membrane for use in passive DEFCs.
‐ κ‐Car/PVA‐GO biopolymer composite membrane was well‐synthesized.
‐ The presence of functional groups successfully increased ionic conductivity.
‐ Introduction of GO and three‐networking dimension reduced ethanol permeability.
‐ The modification of PVA and GO within the κ‐Car biopolymer truly improved the properties of new PEMs.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.52256</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3292-8009</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2022-06, Vol.139 (22), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2648045709 |
source | Wiley |
subjects | batteries and fuel cells Biopolymers Carrageenan Electrolytic cells Ethanol Fuel cells Graphene Literature reviews Materials science Maximum power density Mechanical properties Membranes Polymers Polyvinyl alcohol Protons renewable polymers |
title | κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%BA%E2%80%90carrageenan/polyvinyl%20alcohol%E2%80%90graphene%20oxide%20biopolymer%20composite%20membrane%20for%20application%20of%20air%E2%80%90breathing%20passive%20direct%20ethanol%20fuel%20cells&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zakaria,%20Zulfirdaus&rft.date=2022-06-10&rft.volume=139&rft.issue=22&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.52256&rft_dat=%3Cproquest_cross%3E2648045709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2976-b98733d3a70d4cb4480eee9d5a2237c610865362ed2920001eb79517aec4bced3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648045709&rft_id=info:pmid/&rfr_iscdi=true |