Loading…
Effect of Projectile Rotation on High-Velocity Impact Fracture
This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile...
Saved in:
Published in: | Physical mesomechanics 2022-03, Vol.25 (2), p.119-128 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3 |
container_end_page | 128 |
container_issue | 2 |
container_start_page | 119 |
container_title | Physical mesomechanics |
container_volume | 25 |
creator | Radchenko, P. A. Batuev, S. P. Radchenko, A. V. |
description | This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile rotation about the longitudinal axis is varied from 0 to 10 000 rps. The behavior of the projectile and target materials is described by an elastic-plastic model. The limiting value of the plastic strain rate is used as a fracture criterion. Finite element simulation is carried out using an original algorithm and EFES 2.0 software package for modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, as well as erosion fracture of materials. The adequacy of the mathematical model and the numerical algorithm is confirmed by good agreement between experiment and simulation. The results obtained show that the projectile rotation has a significant effect on the fracture of interacting bodies and the projectile kinematics. It enhances the plastic deformation of the projectile in the contact area and erosion fracture, and increases the occurrence of a ricochet by reducing the impact angle. In the case of an oblique impact, with increasing impact angle α to 70°, the volume of the fragmented material (debris) of the head for both the rotating and nonrotating projectile increases, leading to a decrease in the kinetic energy of the projectile part that penetrates the target. |
doi_str_mv | 10.1134/S1029959922020035 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648149967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648149967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBUvsDvAU8R2ffmYsgpbWFguLrGtLNbk1Iu3U3OfTfu6WCB3EYZj74HgNDyDWFW0q5uHulwBAlImPAALg8IyOKCLkUTJwnnOj8yF-SSYwtpOIMBeCI3M-cs6bPvMueg28TbDqbvfi-6hu_y1Ivms1n_mE7b5r-kC23-yrJ5yHNIdgrcuGqLtrJzx6T9_nsbbrIV0-Py-nDKjdMqD53dc2tqwGpcVRbAGdkgZQqJQGFXDOtwHKtUNe6MtoILSXlytlKF8VaGD4mN6fcffBfg4192foh7NLJkilRUIGodFLRk8oEH2OwrtyHZluFQ0mhPH6q_POp5GEnT0za3caG3-T_Td-4wWhJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648149967</pqid></control><display><type>article</type><title>Effect of Projectile Rotation on High-Velocity Impact Fracture</title><source>Springer Nature</source><creator>Radchenko, P. A. ; Batuev, S. P. ; Radchenko, A. V.</creator><creatorcontrib>Radchenko, P. A. ; Batuev, S. P. ; Radchenko, A. V.</creatorcontrib><description>This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile rotation about the longitudinal axis is varied from 0 to 10 000 rps. The behavior of the projectile and target materials is described by an elastic-plastic model. The limiting value of the plastic strain rate is used as a fracture criterion. Finite element simulation is carried out using an original algorithm and EFES 2.0 software package for modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, as well as erosion fracture of materials. The adequacy of the mathematical model and the numerical algorithm is confirmed by good agreement between experiment and simulation. The results obtained show that the projectile rotation has a significant effect on the fracture of interacting bodies and the projectile kinematics. It enhances the plastic deformation of the projectile in the contact area and erosion fracture, and increases the occurrence of a ricochet by reducing the impact angle. In the case of an oblique impact, with increasing impact angle α to 70°, the volume of the fragmented material (debris) of the head for both the rotating and nonrotating projectile increases, leading to a decrease in the kinetic energy of the projectile part that penetrates the target.</description><identifier>ISSN: 1029-9599</identifier><identifier>EISSN: 1990-5424</identifier><identifier>DOI: 10.1134/S1029959922020035</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adequacy ; Algorithms ; Classical Mechanics ; Computer simulation ; Elastic limit ; Finite element method ; Free surfaces ; High strength steels ; Impact angle ; Kinematics ; Kinetic energy ; Materials Science ; Mathematical models ; Numerical analysis ; Physics ; Physics and Astronomy ; Plastic deformation ; Projectiles ; Rotation ; Solid State Physics ; Strain rate</subject><ispartof>Physical mesomechanics, 2022-03, Vol.25 (2), p.119-128</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3</citedby><cites>FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Radchenko, P. A.</creatorcontrib><creatorcontrib>Batuev, S. P.</creatorcontrib><creatorcontrib>Radchenko, A. V.</creatorcontrib><title>Effect of Projectile Rotation on High-Velocity Impact Fracture</title><title>Physical mesomechanics</title><addtitle>Phys Mesomech</addtitle><description>This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile rotation about the longitudinal axis is varied from 0 to 10 000 rps. The behavior of the projectile and target materials is described by an elastic-plastic model. The limiting value of the plastic strain rate is used as a fracture criterion. Finite element simulation is carried out using an original algorithm and EFES 2.0 software package for modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, as well as erosion fracture of materials. The adequacy of the mathematical model and the numerical algorithm is confirmed by good agreement between experiment and simulation. The results obtained show that the projectile rotation has a significant effect on the fracture of interacting bodies and the projectile kinematics. It enhances the plastic deformation of the projectile in the contact area and erosion fracture, and increases the occurrence of a ricochet by reducing the impact angle. In the case of an oblique impact, with increasing impact angle α to 70°, the volume of the fragmented material (debris) of the head for both the rotating and nonrotating projectile increases, leading to a decrease in the kinetic energy of the projectile part that penetrates the target.</description><subject>Adequacy</subject><subject>Algorithms</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Elastic limit</subject><subject>Finite element method</subject><subject>Free surfaces</subject><subject>High strength steels</subject><subject>Impact angle</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plastic deformation</subject><subject>Projectiles</subject><subject>Rotation</subject><subject>Solid State Physics</subject><subject>Strain rate</subject><issn>1029-9599</issn><issn>1990-5424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBUvsDvAU8R2ffmYsgpbWFguLrGtLNbk1Iu3U3OfTfu6WCB3EYZj74HgNDyDWFW0q5uHulwBAlImPAALg8IyOKCLkUTJwnnOj8yF-SSYwtpOIMBeCI3M-cs6bPvMueg28TbDqbvfi-6hu_y1Ivms1n_mE7b5r-kC23-yrJ5yHNIdgrcuGqLtrJzx6T9_nsbbrIV0-Py-nDKjdMqD53dc2tqwGpcVRbAGdkgZQqJQGFXDOtwHKtUNe6MtoILSXlytlKF8VaGD4mN6fcffBfg4192foh7NLJkilRUIGodFLRk8oEH2OwrtyHZluFQ0mhPH6q_POp5GEnT0za3caG3-T_Td-4wWhJ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Radchenko, P. A.</creator><creator>Batuev, S. P.</creator><creator>Radchenko, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Effect of Projectile Rotation on High-Velocity Impact Fracture</title><author>Radchenko, P. A. ; Batuev, S. P. ; Radchenko, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adequacy</topic><topic>Algorithms</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Elastic limit</topic><topic>Finite element method</topic><topic>Free surfaces</topic><topic>High strength steels</topic><topic>Impact angle</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plastic deformation</topic><topic>Projectiles</topic><topic>Rotation</topic><topic>Solid State Physics</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radchenko, P. A.</creatorcontrib><creatorcontrib>Batuev, S. P.</creatorcontrib><creatorcontrib>Radchenko, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical mesomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radchenko, P. A.</au><au>Batuev, S. P.</au><au>Radchenko, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Projectile Rotation on High-Velocity Impact Fracture</atitle><jtitle>Physical mesomechanics</jtitle><stitle>Phys Mesomech</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>25</volume><issue>2</issue><spage>119</spage><epage>128</epage><pages>119-128</pages><issn>1029-9599</issn><eissn>1990-5424</eissn><abstract>This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile rotation about the longitudinal axis is varied from 0 to 10 000 rps. The behavior of the projectile and target materials is described by an elastic-plastic model. The limiting value of the plastic strain rate is used as a fracture criterion. Finite element simulation is carried out using an original algorithm and EFES 2.0 software package for modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, as well as erosion fracture of materials. The adequacy of the mathematical model and the numerical algorithm is confirmed by good agreement between experiment and simulation. The results obtained show that the projectile rotation has a significant effect on the fracture of interacting bodies and the projectile kinematics. It enhances the plastic deformation of the projectile in the contact area and erosion fracture, and increases the occurrence of a ricochet by reducing the impact angle. In the case of an oblique impact, with increasing impact angle α to 70°, the volume of the fragmented material (debris) of the head for both the rotating and nonrotating projectile increases, leading to a decrease in the kinetic energy of the projectile part that penetrates the target.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1029959922020035</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-9599 |
ispartof | Physical mesomechanics, 2022-03, Vol.25 (2), p.119-128 |
issn | 1029-9599 1990-5424 |
language | eng |
recordid | cdi_proquest_journals_2648149967 |
source | Springer Nature |
subjects | Adequacy Algorithms Classical Mechanics Computer simulation Elastic limit Finite element method Free surfaces High strength steels Impact angle Kinematics Kinetic energy Materials Science Mathematical models Numerical analysis Physics Physics and Astronomy Plastic deformation Projectiles Rotation Solid State Physics Strain rate |
title | Effect of Projectile Rotation on High-Velocity Impact Fracture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Projectile%20Rotation%20on%20High-Velocity%20Impact%20Fracture&rft.jtitle=Physical%20mesomechanics&rft.au=Radchenko,%20P.%20A.&rft.date=2022-03-01&rft.volume=25&rft.issue=2&rft.spage=119&rft.epage=128&rft.pages=119-128&rft.issn=1029-9599&rft.eissn=1990-5424&rft_id=info:doi/10.1134/S1029959922020035&rft_dat=%3Cproquest_cross%3E2648149967%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648149967&rft_id=info:pmid/&rfr_iscdi=true |