Loading…

Effect of Projectile Rotation on High-Velocity Impact Fracture

This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile...

Full description

Saved in:
Bibliographic Details
Published in:Physical mesomechanics 2022-03, Vol.25 (2), p.119-128
Main Authors: Radchenko, P. A., Batuev, S. P., Radchenko, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3
cites cdi_FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3
container_end_page 128
container_issue 2
container_start_page 119
container_title Physical mesomechanics
container_volume 25
creator Radchenko, P. A.
Batuev, S. P.
Radchenko, A. V.
description This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile rotation about the longitudinal axis is varied from 0 to 10 000 rps. The behavior of the projectile and target materials is described by an elastic-plastic model. The limiting value of the plastic strain rate is used as a fracture criterion. Finite element simulation is carried out using an original algorithm and EFES 2.0 software package for modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, as well as erosion fracture of materials. The adequacy of the mathematical model and the numerical algorithm is confirmed by good agreement between experiment and simulation. The results obtained show that the projectile rotation has a significant effect on the fracture of interacting bodies and the projectile kinematics. It enhances the plastic deformation of the projectile in the contact area and erosion fracture, and increases the occurrence of a ricochet by reducing the impact angle. In the case of an oblique impact, with increasing impact angle α to 70°, the volume of the fragmented material (debris) of the head for both the rotating and nonrotating projectile increases, leading to a decrease in the kinetic energy of the projectile part that penetrates the target.
doi_str_mv 10.1134/S1029959922020035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648149967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648149967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBUvsDvAU8R2ffmYsgpbWFguLrGtLNbk1Iu3U3OfTfu6WCB3EYZj74HgNDyDWFW0q5uHulwBAlImPAALg8IyOKCLkUTJwnnOj8yF-SSYwtpOIMBeCI3M-cs6bPvMueg28TbDqbvfi-6hu_y1Ivms1n_mE7b5r-kC23-yrJ5yHNIdgrcuGqLtrJzx6T9_nsbbrIV0-Py-nDKjdMqD53dc2tqwGpcVRbAGdkgZQqJQGFXDOtwHKtUNe6MtoILSXlytlKF8VaGD4mN6fcffBfg4192foh7NLJkilRUIGodFLRk8oEH2OwrtyHZluFQ0mhPH6q_POp5GEnT0za3caG3-T_Td-4wWhJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648149967</pqid></control><display><type>article</type><title>Effect of Projectile Rotation on High-Velocity Impact Fracture</title><source>Springer Nature</source><creator>Radchenko, P. A. ; Batuev, S. P. ; Radchenko, A. V.</creator><creatorcontrib>Radchenko, P. A. ; Batuev, S. P. ; Radchenko, A. V.</creatorcontrib><description>This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile rotation about the longitudinal axis is varied from 0 to 10 000 rps. The behavior of the projectile and target materials is described by an elastic-plastic model. The limiting value of the plastic strain rate is used as a fracture criterion. Finite element simulation is carried out using an original algorithm and EFES 2.0 software package for modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, as well as erosion fracture of materials. The adequacy of the mathematical model and the numerical algorithm is confirmed by good agreement between experiment and simulation. The results obtained show that the projectile rotation has a significant effect on the fracture of interacting bodies and the projectile kinematics. It enhances the plastic deformation of the projectile in the contact area and erosion fracture, and increases the occurrence of a ricochet by reducing the impact angle. In the case of an oblique impact, with increasing impact angle α to 70°, the volume of the fragmented material (debris) of the head for both the rotating and nonrotating projectile increases, leading to a decrease in the kinetic energy of the projectile part that penetrates the target.</description><identifier>ISSN: 1029-9599</identifier><identifier>EISSN: 1990-5424</identifier><identifier>DOI: 10.1134/S1029959922020035</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adequacy ; Algorithms ; Classical Mechanics ; Computer simulation ; Elastic limit ; Finite element method ; Free surfaces ; High strength steels ; Impact angle ; Kinematics ; Kinetic energy ; Materials Science ; Mathematical models ; Numerical analysis ; Physics ; Physics and Astronomy ; Plastic deformation ; Projectiles ; Rotation ; Solid State Physics ; Strain rate</subject><ispartof>Physical mesomechanics, 2022-03, Vol.25 (2), p.119-128</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3</citedby><cites>FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Radchenko, P. A.</creatorcontrib><creatorcontrib>Batuev, S. P.</creatorcontrib><creatorcontrib>Radchenko, A. V.</creatorcontrib><title>Effect of Projectile Rotation on High-Velocity Impact Fracture</title><title>Physical mesomechanics</title><addtitle>Phys Mesomech</addtitle><description>This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile rotation about the longitudinal axis is varied from 0 to 10 000 rps. The behavior of the projectile and target materials is described by an elastic-plastic model. The limiting value of the plastic strain rate is used as a fracture criterion. Finite element simulation is carried out using an original algorithm and EFES 2.0 software package for modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, as well as erosion fracture of materials. The adequacy of the mathematical model and the numerical algorithm is confirmed by good agreement between experiment and simulation. The results obtained show that the projectile rotation has a significant effect on the fracture of interacting bodies and the projectile kinematics. It enhances the plastic deformation of the projectile in the contact area and erosion fracture, and increases the occurrence of a ricochet by reducing the impact angle. In the case of an oblique impact, with increasing impact angle α to 70°, the volume of the fragmented material (debris) of the head for both the rotating and nonrotating projectile increases, leading to a decrease in the kinetic energy of the projectile part that penetrates the target.</description><subject>Adequacy</subject><subject>Algorithms</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Elastic limit</subject><subject>Finite element method</subject><subject>Free surfaces</subject><subject>High strength steels</subject><subject>Impact angle</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plastic deformation</subject><subject>Projectiles</subject><subject>Rotation</subject><subject>Solid State Physics</subject><subject>Strain rate</subject><issn>1029-9599</issn><issn>1990-5424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBUvsDvAU8R2ffmYsgpbWFguLrGtLNbk1Iu3U3OfTfu6WCB3EYZj74HgNDyDWFW0q5uHulwBAlImPAALg8IyOKCLkUTJwnnOj8yF-SSYwtpOIMBeCI3M-cs6bPvMueg28TbDqbvfi-6hu_y1Ivms1n_mE7b5r-kC23-yrJ5yHNIdgrcuGqLtrJzx6T9_nsbbrIV0-Py-nDKjdMqD53dc2tqwGpcVRbAGdkgZQqJQGFXDOtwHKtUNe6MtoILSXlytlKF8VaGD4mN6fcffBfg4192foh7NLJkilRUIGodFLRk8oEH2OwrtyHZluFQ0mhPH6q_POp5GEnT0za3caG3-T_Td-4wWhJ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Radchenko, P. A.</creator><creator>Batuev, S. P.</creator><creator>Radchenko, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Effect of Projectile Rotation on High-Velocity Impact Fracture</title><author>Radchenko, P. A. ; Batuev, S. P. ; Radchenko, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adequacy</topic><topic>Algorithms</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Elastic limit</topic><topic>Finite element method</topic><topic>Free surfaces</topic><topic>High strength steels</topic><topic>Impact angle</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plastic deformation</topic><topic>Projectiles</topic><topic>Rotation</topic><topic>Solid State Physics</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radchenko, P. A.</creatorcontrib><creatorcontrib>Batuev, S. P.</creatorcontrib><creatorcontrib>Radchenko, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical mesomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radchenko, P. A.</au><au>Batuev, S. P.</au><au>Radchenko, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Projectile Rotation on High-Velocity Impact Fracture</atitle><jtitle>Physical mesomechanics</jtitle><stitle>Phys Mesomech</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>25</volume><issue>2</issue><spage>119</spage><epage>128</epage><pages>119-128</pages><issn>1029-9599</issn><eissn>1990-5424</eissn><abstract>This study explores the effect of rotation of an ogival high-strength steel projectile on its fracture during high-velocity collision with a steel target of finite thickness. The considered range of impact angles is from 0° to 75°. The initial projectile velocity is 1000 m/s. The rate of projectile rotation about the longitudinal axis is varied from 0 to 10 000 rps. The behavior of the projectile and target materials is described by an elastic-plastic model. The limiting value of the plastic strain rate is used as a fracture criterion. Finite element simulation is carried out using an original algorithm and EFES 2.0 software package for modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, as well as erosion fracture of materials. The adequacy of the mathematical model and the numerical algorithm is confirmed by good agreement between experiment and simulation. The results obtained show that the projectile rotation has a significant effect on the fracture of interacting bodies and the projectile kinematics. It enhances the plastic deformation of the projectile in the contact area and erosion fracture, and increases the occurrence of a ricochet by reducing the impact angle. In the case of an oblique impact, with increasing impact angle α to 70°, the volume of the fragmented material (debris) of the head for both the rotating and nonrotating projectile increases, leading to a decrease in the kinetic energy of the projectile part that penetrates the target.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1029959922020035</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1029-9599
ispartof Physical mesomechanics, 2022-03, Vol.25 (2), p.119-128
issn 1029-9599
1990-5424
language eng
recordid cdi_proquest_journals_2648149967
source Springer Nature
subjects Adequacy
Algorithms
Classical Mechanics
Computer simulation
Elastic limit
Finite element method
Free surfaces
High strength steels
Impact angle
Kinematics
Kinetic energy
Materials Science
Mathematical models
Numerical analysis
Physics
Physics and Astronomy
Plastic deformation
Projectiles
Rotation
Solid State Physics
Strain rate
title Effect of Projectile Rotation on High-Velocity Impact Fracture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Projectile%20Rotation%20on%20High-Velocity%20Impact%20Fracture&rft.jtitle=Physical%20mesomechanics&rft.au=Radchenko,%20P.%20A.&rft.date=2022-03-01&rft.volume=25&rft.issue=2&rft.spage=119&rft.epage=128&rft.pages=119-128&rft.issn=1029-9599&rft.eissn=1990-5424&rft_id=info:doi/10.1134/S1029959922020035&rft_dat=%3Cproquest_cross%3E2648149967%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-fdd3efd091cf17e00fc589116650945b2760e37697d7ac7c4755136fea788b4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648149967&rft_id=info:pmid/&rfr_iscdi=true