Loading…

High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate

Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remain...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-04
Main Authors: Celik, Oguz Tolga, Sarabalis, Christopher J, Mayor, Felix M, Stokowski, Hubert S, Herrmann, Jason F, McKenna, Timothy P, Lee, Nathan R A, Jiang, Wentao, Multani, Kevin K S, Safavi-Naeini, Amir H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Celik, Oguz Tolga
Sarabalis, Christopher J
Mayor, Felix M
Stokowski, Hubert S
Herrmann, Jason F
McKenna, Timothy P
Lee, Nathan R A
Jiang, Wentao
Multani, Kevin K S
Safavi-Naeini, Amir H
description Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm\(^2\). Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 \(\times\) 10\(^5\). This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.
doi_str_mv 10.48550/arxiv.2204.03138
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2648327992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648327992</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-2a9c9e8513fcb9c083ee4f90f3fad1a9eb72d01dd6dc934aa3b0a17b50ffcddf3</originalsourceid><addsrcrecordid>eNotjc1KAzEYRYMgWGofwF3AdWryZdJJllL8g0oXdl--yU-bkiZ1JlN9fCu6uoezOJeQO8HnjVaKP2D_Hc9zAN7MuRRSX5EJSCmYbgBuyGwYDpxzWLSglJyQ3Wvc7VmH2X1FV_d0-b7-YOeSKu48S_7sE_XJ29oXVk41WnosbkxYY8m0BNpqTvORpkuk0php3cfMQky_6sLjkeZYOqz-llwHTIOf_e-UbJ6fNstXtlq_vC0fVwwVAAM01nithAy2M5Zr6X0TDA8yoBNofNeC48K5hbNGNoiy4yjaTvEQrHNBTsn9X_bUl8_RD3V7KGOfL49bWDRaQmsMyB-e41nX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648327992</pqid></control><display><type>article</type><title>High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate</title><source>Publicly Available Content Database</source><creator>Celik, Oguz Tolga ; Sarabalis, Christopher J ; Mayor, Felix M ; Stokowski, Hubert S ; Herrmann, Jason F ; McKenna, Timothy P ; Lee, Nathan R A ; Jiang, Wentao ; Multani, Kevin K S ; Safavi-Naeini, Amir H</creator><creatorcontrib>Celik, Oguz Tolga ; Sarabalis, Christopher J ; Mayor, Felix M ; Stokowski, Hubert S ; Herrmann, Jason F ; McKenna, Timothy P ; Lee, Nathan R A ; Jiang, Wentao ; Multani, Kevin K S ; Safavi-Naeini, Amir H</creatorcontrib><description>Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm\(^2\). Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 \(\times\) 10\(^5\). This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2204.03138</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic clocks ; Bandwidths ; CMOS ; Crosstalk ; Electric potential ; Lithium niobates ; Mach-Zehnder interferometers ; Photonics ; Quantum computers ; Qubits (quantum computing) ; Sapphire ; Thin films ; Voltage ; Wave propagation ; Waveguides</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2648327992?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Celik, Oguz Tolga</creatorcontrib><creatorcontrib>Sarabalis, Christopher J</creatorcontrib><creatorcontrib>Mayor, Felix M</creatorcontrib><creatorcontrib>Stokowski, Hubert S</creatorcontrib><creatorcontrib>Herrmann, Jason F</creatorcontrib><creatorcontrib>McKenna, Timothy P</creatorcontrib><creatorcontrib>Lee, Nathan R A</creatorcontrib><creatorcontrib>Jiang, Wentao</creatorcontrib><creatorcontrib>Multani, Kevin K S</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H</creatorcontrib><title>High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate</title><title>arXiv.org</title><description>Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm\(^2\). Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 \(\times\) 10\(^5\). This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.</description><subject>Atomic clocks</subject><subject>Bandwidths</subject><subject>CMOS</subject><subject>Crosstalk</subject><subject>Electric potential</subject><subject>Lithium niobates</subject><subject>Mach-Zehnder interferometers</subject><subject>Photonics</subject><subject>Quantum computers</subject><subject>Qubits (quantum computing)</subject><subject>Sapphire</subject><subject>Thin films</subject><subject>Voltage</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1KAzEYRYMgWGofwF3AdWryZdJJllL8g0oXdl--yU-bkiZ1JlN9fCu6uoezOJeQO8HnjVaKP2D_Hc9zAN7MuRRSX5EJSCmYbgBuyGwYDpxzWLSglJyQ3Wvc7VmH2X1FV_d0-b7-YOeSKu48S_7sE_XJ29oXVk41WnosbkxYY8m0BNpqTvORpkuk0php3cfMQky_6sLjkeZYOqz-llwHTIOf_e-UbJ6fNstXtlq_vC0fVwwVAAM01nithAy2M5Zr6X0TDA8yoBNofNeC48K5hbNGNoiy4yjaTvEQrHNBTsn9X_bUl8_RD3V7KGOfL49bWDRaQmsMyB-e41nX</recordid><startdate>20220407</startdate><enddate>20220407</enddate><creator>Celik, Oguz Tolga</creator><creator>Sarabalis, Christopher J</creator><creator>Mayor, Felix M</creator><creator>Stokowski, Hubert S</creator><creator>Herrmann, Jason F</creator><creator>McKenna, Timothy P</creator><creator>Lee, Nathan R A</creator><creator>Jiang, Wentao</creator><creator>Multani, Kevin K S</creator><creator>Safavi-Naeini, Amir H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220407</creationdate><title>High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate</title><author>Celik, Oguz Tolga ; Sarabalis, Christopher J ; Mayor, Felix M ; Stokowski, Hubert S ; Herrmann, Jason F ; McKenna, Timothy P ; Lee, Nathan R A ; Jiang, Wentao ; Multani, Kevin K S ; Safavi-Naeini, Amir H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-2a9c9e8513fcb9c083ee4f90f3fad1a9eb72d01dd6dc934aa3b0a17b50ffcddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic clocks</topic><topic>Bandwidths</topic><topic>CMOS</topic><topic>Crosstalk</topic><topic>Electric potential</topic><topic>Lithium niobates</topic><topic>Mach-Zehnder interferometers</topic><topic>Photonics</topic><topic>Quantum computers</topic><topic>Qubits (quantum computing)</topic><topic>Sapphire</topic><topic>Thin films</topic><topic>Voltage</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Celik, Oguz Tolga</creatorcontrib><creatorcontrib>Sarabalis, Christopher J</creatorcontrib><creatorcontrib>Mayor, Felix M</creatorcontrib><creatorcontrib>Stokowski, Hubert S</creatorcontrib><creatorcontrib>Herrmann, Jason F</creatorcontrib><creatorcontrib>McKenna, Timothy P</creatorcontrib><creatorcontrib>Lee, Nathan R A</creatorcontrib><creatorcontrib>Jiang, Wentao</creatorcontrib><creatorcontrib>Multani, Kevin K S</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celik, Oguz Tolga</au><au>Sarabalis, Christopher J</au><au>Mayor, Felix M</au><au>Stokowski, Hubert S</au><au>Herrmann, Jason F</au><au>McKenna, Timothy P</au><au>Lee, Nathan R A</au><au>Jiang, Wentao</au><au>Multani, Kevin K S</au><au>Safavi-Naeini, Amir H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate</atitle><jtitle>arXiv.org</jtitle><date>2022-04-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm\(^2\). Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 \(\times\) 10\(^5\). This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2204.03138</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2648327992
source Publicly Available Content Database
subjects Atomic clocks
Bandwidths
CMOS
Crosstalk
Electric potential
Lithium niobates
Mach-Zehnder interferometers
Photonics
Quantum computers
Qubits (quantum computing)
Sapphire
Thin films
Voltage
Wave propagation
Waveguides
title High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-bandwidth%20CMOS-voltage-level%20electro-optic%20modulation%20of%20780%20nm%20light%20in%20thin-film%20lithium%20niobate&rft.jtitle=arXiv.org&rft.au=Celik,%20Oguz%20Tolga&rft.date=2022-04-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2204.03138&rft_dat=%3Cproquest%3E2648327992%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-2a9c9e8513fcb9c083ee4f90f3fad1a9eb72d01dd6dc934aa3b0a17b50ffcddf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648327992&rft_id=info:pmid/&rfr_iscdi=true