Loading…
μSR investigation of the Fe-doped Ca3Ru2O7 polar metal
Ca3Ru2O7 is a polar metal that belongs to the class of multiferroic magnetic materials. Here, tiny amounts of Fe doping in the Ru sites bring about dramatic changes in the electronic and magnetic properties and generate a complex H–T phase diagram. To date, not much is known about the ground state o...
Saved in:
Published in: | Journal of magnetism and magnetic materials 2022-06, Vol.551, p.169138, Article 169138 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ca3Ru2O7 is a polar metal that belongs to the class of multiferroic magnetic materials. Here, tiny amounts of Fe doping in the Ru sites bring about dramatic changes in the electronic and magnetic properties and generate a complex H–T phase diagram. To date, not much is known about the ground state of such a system in the absence of magnetic field. By performing muon-spin spectroscopy (μSR) measurements in 5% Fe-doped Ca3Ru2O7 single crystals, we investigate its electronic properties at a local level. Transverse-field μSR results indicate a very sharp normal-to-antiferromagnetic transition at TN=79.7(1)K, with a width of only 1K. Zero-field μSR measurements in the magnetically ordered state allow us to determine the local fields Bi at the muon implantation sites. By symmetry, muons stopping close to the RuO2 planes detect only the weak nuclear dipolar fields, while those stopping next to apical oxygens sense magnetic fields as high as 150mT. In remarkable agreement with the nominal Fe-doping, a ∼6% minority of the these muons feel slightly lower fields, reflecting a local magnetic frustration induced by iron ions. Finally, Bi shows no significant changes across the metal-to-insulator transition, close to 40K. We ascribe this surprising lack of sensitivity to the presence of crystal twinning.
•Positive muons are very sensitive probes of the local magnetic properties of Fe-doped Ca3Ru2O7.•Weak transverse-field μSR was used to determine the magnetic volume fraction vs temperature.•Zero-field μSR allowed us to study the evolution of the magnetically ordered phase.•We deduce a local magnetic frustration induced by iron ions, compatible with Fe doping. |
---|---|
ISSN: | 0304-8853 1873-4766 |
DOI: | 10.1016/j.jmmm.2022.169138 |