Loading…
A Review on Outlier/Anomaly Detection in Time Series Data
Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection...
Saved in:
Published in: | ACM computing surveys 2022-04, Vol.54 (3), p.1-33 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273 |
container_end_page | 33 |
container_issue | 3 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 54 |
creator | Blázquez-García, Ane Conde, Angel Mori, Usue Lozano, Jose A. |
description | Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique. |
doi_str_mv | 10.1145/3444690 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648606985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648606985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273</originalsourceid><addsrcrecordid>eNotUE1Lw0AUXETBWMW_sODBU-x7-5XkWFqrQqGg9RzWzQtsyUfdTZT-eyPtaRhmmBmGsXuEJ0Sl51IpZQq4YAlqnaWZVHjJEpAGUpAA1-wmxj0ACIUmYcWCv9OPp1_ed3w7Do2nMF90fWubI1_RQG7wk-I7vvMt8Q8KniJf2cHesqvaNpHuzjhjn-vn3fI13Wxf3paLTeqkFkOK6JzTFVaulsogINqJGlMoJMjttMhQ_SW0FhpzgZihsIWrC0GVqSuRyRl7OOUeQv89UhzKfT-GbqoshVG5AVPkenI9nlwu9DEGqstD8K0NxxKh_P-lPP8i_wAD81Fv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648606985</pqid></control><display><type>article</type><title>A Review on Outlier/Anomaly Detection in Time Series Data</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Blázquez-García, Ane ; Conde, Angel ; Mori, Usue ; Lozano, Jose A.</creator><creatorcontrib>Blázquez-García, Ane ; Conde, Angel ; Mori, Usue ; Lozano, Jose A.</creatorcontrib><description>Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3444690</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Anomalies ; Computer science ; Data analysis ; Data collection ; Outliers (statistics) ; Taxonomy ; Time series</subject><ispartof>ACM computing surveys, 2022-04, Vol.54 (3), p.1-33</ispartof><rights>Copyright Association for Computing Machinery Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273</citedby><cites>FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Blázquez-García, Ane</creatorcontrib><creatorcontrib>Conde, Angel</creatorcontrib><creatorcontrib>Mori, Usue</creatorcontrib><creatorcontrib>Lozano, Jose A.</creatorcontrib><title>A Review on Outlier/Anomaly Detection in Time Series Data</title><title>ACM computing surveys</title><description>Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.</description><subject>Anomalies</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Outliers (statistics)</subject><subject>Taxonomy</subject><subject>Time series</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotUE1Lw0AUXETBWMW_sODBU-x7-5XkWFqrQqGg9RzWzQtsyUfdTZT-eyPtaRhmmBmGsXuEJ0Sl51IpZQq4YAlqnaWZVHjJEpAGUpAA1-wmxj0ACIUmYcWCv9OPp1_ed3w7Do2nMF90fWubI1_RQG7wk-I7vvMt8Q8KniJf2cHesqvaNpHuzjhjn-vn3fI13Wxf3paLTeqkFkOK6JzTFVaulsogINqJGlMoJMjttMhQ_SW0FhpzgZihsIWrC0GVqSuRyRl7OOUeQv89UhzKfT-GbqoshVG5AVPkenI9nlwu9DEGqstD8K0NxxKh_P-lPP8i_wAD81Fv</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Blázquez-García, Ane</creator><creator>Conde, Angel</creator><creator>Mori, Usue</creator><creator>Lozano, Jose A.</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220401</creationdate><title>A Review on Outlier/Anomaly Detection in Time Series Data</title><author>Blázquez-García, Ane ; Conde, Angel ; Mori, Usue ; Lozano, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Outliers (statistics)</topic><topic>Taxonomy</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blázquez-García, Ane</creatorcontrib><creatorcontrib>Conde, Angel</creatorcontrib><creatorcontrib>Mori, Usue</creatorcontrib><creatorcontrib>Lozano, Jose A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blázquez-García, Ane</au><au>Conde, Angel</au><au>Mori, Usue</au><au>Lozano, Jose A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review on Outlier/Anomaly Detection in Time Series Data</atitle><jtitle>ACM computing surveys</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>54</volume><issue>3</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3444690</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2022-04, Vol.54 (3), p.1-33 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_2648606985 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Anomalies Computer science Data analysis Data collection Outliers (statistics) Taxonomy Time series |
title | A Review on Outlier/Anomaly Detection in Time Series Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20on%20Outlier/Anomaly%20Detection%20in%20Time%20Series%20Data&rft.jtitle=ACM%20computing%20surveys&rft.au=Bl%C3%A1zquez-Garc%C3%ADa,%20Ane&rft.date=2022-04-01&rft.volume=54&rft.issue=3&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3444690&rft_dat=%3Cproquest_cross%3E2648606985%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648606985&rft_id=info:pmid/&rfr_iscdi=true |