Loading…

A Review on Outlier/Anomaly Detection in Time Series Data

Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection...

Full description

Saved in:
Bibliographic Details
Published in:ACM computing surveys 2022-04, Vol.54 (3), p.1-33
Main Authors: Blázquez-García, Ane, Conde, Angel, Mori, Usue, Lozano, Jose A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273
cites cdi_FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273
container_end_page 33
container_issue 3
container_start_page 1
container_title ACM computing surveys
container_volume 54
creator Blázquez-García, Ane
Conde, Angel
Mori, Usue
Lozano, Jose A.
description Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.
doi_str_mv 10.1145/3444690
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648606985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648606985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273</originalsourceid><addsrcrecordid>eNotUE1Lw0AUXETBWMW_sODBU-x7-5XkWFqrQqGg9RzWzQtsyUfdTZT-eyPtaRhmmBmGsXuEJ0Sl51IpZQq4YAlqnaWZVHjJEpAGUpAA1-wmxj0ACIUmYcWCv9OPp1_ed3w7Do2nMF90fWubI1_RQG7wk-I7vvMt8Q8KniJf2cHesqvaNpHuzjhjn-vn3fI13Wxf3paLTeqkFkOK6JzTFVaulsogINqJGlMoJMjttMhQ_SW0FhpzgZihsIWrC0GVqSuRyRl7OOUeQv89UhzKfT-GbqoshVG5AVPkenI9nlwu9DEGqstD8K0NxxKh_P-lPP8i_wAD81Fv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648606985</pqid></control><display><type>article</type><title>A Review on Outlier/Anomaly Detection in Time Series Data</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Blázquez-García, Ane ; Conde, Angel ; Mori, Usue ; Lozano, Jose A.</creator><creatorcontrib>Blázquez-García, Ane ; Conde, Angel ; Mori, Usue ; Lozano, Jose A.</creatorcontrib><description>Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3444690</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Anomalies ; Computer science ; Data analysis ; Data collection ; Outliers (statistics) ; Taxonomy ; Time series</subject><ispartof>ACM computing surveys, 2022-04, Vol.54 (3), p.1-33</ispartof><rights>Copyright Association for Computing Machinery Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273</citedby><cites>FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Blázquez-García, Ane</creatorcontrib><creatorcontrib>Conde, Angel</creatorcontrib><creatorcontrib>Mori, Usue</creatorcontrib><creatorcontrib>Lozano, Jose A.</creatorcontrib><title>A Review on Outlier/Anomaly Detection in Time Series Data</title><title>ACM computing surveys</title><description>Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.</description><subject>Anomalies</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Outliers (statistics)</subject><subject>Taxonomy</subject><subject>Time series</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotUE1Lw0AUXETBWMW_sODBU-x7-5XkWFqrQqGg9RzWzQtsyUfdTZT-eyPtaRhmmBmGsXuEJ0Sl51IpZQq4YAlqnaWZVHjJEpAGUpAA1-wmxj0ACIUmYcWCv9OPp1_ed3w7Do2nMF90fWubI1_RQG7wk-I7vvMt8Q8KniJf2cHesqvaNpHuzjhjn-vn3fI13Wxf3paLTeqkFkOK6JzTFVaulsogINqJGlMoJMjttMhQ_SW0FhpzgZihsIWrC0GVqSuRyRl7OOUeQv89UhzKfT-GbqoshVG5AVPkenI9nlwu9DEGqstD8K0NxxKh_P-lPP8i_wAD81Fv</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Blázquez-García, Ane</creator><creator>Conde, Angel</creator><creator>Mori, Usue</creator><creator>Lozano, Jose A.</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220401</creationdate><title>A Review on Outlier/Anomaly Detection in Time Series Data</title><author>Blázquez-García, Ane ; Conde, Angel ; Mori, Usue ; Lozano, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Outliers (statistics)</topic><topic>Taxonomy</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blázquez-García, Ane</creatorcontrib><creatorcontrib>Conde, Angel</creatorcontrib><creatorcontrib>Mori, Usue</creatorcontrib><creatorcontrib>Lozano, Jose A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blázquez-García, Ane</au><au>Conde, Angel</au><au>Mori, Usue</au><au>Lozano, Jose A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review on Outlier/Anomaly Detection in Time Series Data</atitle><jtitle>ACM computing surveys</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>54</volume><issue>3</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3444690</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2022-04, Vol.54 (3), p.1-33
issn 0360-0300
1557-7341
language eng
recordid cdi_proquest_journals_2648606985
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Anomalies
Computer science
Data analysis
Data collection
Outliers (statistics)
Taxonomy
Time series
title A Review on Outlier/Anomaly Detection in Time Series Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20on%20Outlier/Anomaly%20Detection%20in%20Time%20Series%20Data&rft.jtitle=ACM%20computing%20surveys&rft.au=Bl%C3%A1zquez-Garc%C3%ADa,%20Ane&rft.date=2022-04-01&rft.volume=54&rft.issue=3&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3444690&rft_dat=%3Cproquest_cross%3E2648606985%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-11ccc5d1dcf3461011ac5d66941e08a3006efb2552518211712a9cf92ed6fd273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648606985&rft_id=info:pmid/&rfr_iscdi=true