Loading…
An injectable chitosan-based hydrogel reinforced by oxidized nanocrystalline cellulose and mineral trioxide aggregate designed for tooth engineering applications
The complex anatomy of teeth limits the accessibility and efficacy of regenerative treatments. Therefore, the application of well-known inducers as injectable hydrogels for the regeneration of the dentin-pulp complex is considered a promising approach. In this regard, this study aimed to develop an...
Saved in:
Published in: | Cellulose (London) 2022-04, Vol.29 (6), p.3453-3465 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The complex anatomy of teeth limits the accessibility and efficacy of regenerative treatments. Therefore, the application of well-known inducers as injectable hydrogels for the regeneration of the dentin-pulp complex is considered a promising approach. In this regard, this study aimed to develop an injectable hydrogel containing mineral trioxide aggregate (MTA). The injectable chitosan/oxidized-nanocrystalline cellulose/MTA (CS/OCNC/MTA) hydrogels were prepared, and the physicochemical properties of these hydrogels were evaluated by TGA, FTIR, Rheological analysis, and SEM. Moreover, the effect of MTA on the swelling and degradability of scaffolds was assessed. The proliferative effects of synthesized hydrogels were also determined on human dental pulp stem cells (hDPSCs) by MTT assay. For induction of differentiation and biomineralization in these cells, the alkaline phosphatase activity and Alizarin Red S staining tests were performed in the presence of fabricated scaffolds. The proliferation of hDPSCs was significantly increased in the presence of these hydrogels. Moreover, the addition of MTA to hydrogel structure dramatically improved the differentiation of hDPSCs. These results suggested that this novel injectable hydrogel provides appropriate physiochemical properties and can be considered a promising scaffold for regenerative endodontic procedures.
Graphical abstract |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-022-04491-z |