Loading…
Task Allocation and On-the-job Training
We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from c...
Saved in:
Published in: | NBER Working Paper Series 2021-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | NBER Working Paper Series |
container_volume | |
creator | Baccara, Mariagiovanna Lee, SangMok Leeat Yariv |
description | We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from centralization are greater when tasks arrive more rapidly, and when training technologies improve. Monitoring seniors' backlog of clients always increases welfare but may decrease training. Methodologically, we explore a matching setting with endogenous types, and illustrate useful adaptations of queueing theory techniques for such environments. |
doi_str_mv | 10.3386/w29312 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2649360132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649360132</sourcerecordid><originalsourceid>FETCH-LOGICAL-e722-b6fd67bc4285a99b5b7236745c9907246bdba1512c88e967b80072b193cfb1ae3</originalsourceid><addsrcrecordid>eNotjcFOwzAQRH0oUkuh3xCJAydTezexvceqAlqpUi-5V7bjQNLIhjgVv08kOI3mafSGsY0UL4hGbX-AUMKCrYQhw-eil-w-514IMEbIFXuubb4Wu2FI3k5dioWNTXGOfPoMvE-uqEfbxS5-PLC71g45PP7nmtVvr_X-wE_n9-N-d-JBA3Cn2kZp50swlSVyldOASpeVJxIaSuUaZ2UlwRsTaF4aMWMnCX3rpA24Zk9_2q8xfd9Cni59uo1xfryAKgmVkAj4C2sTPKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649360132</pqid></control><display><type>article</type><title>Task Allocation and On-the-job Training</title><source>ABI/INFORM Global</source><source>Alma/SFX Local Collection</source><creator>Baccara, Mariagiovanna ; Lee, SangMok ; Leeat Yariv</creator><creatorcontrib>Baccara, Mariagiovanna ; Lee, SangMok ; Leeat Yariv</creatorcontrib><description>We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from centralization are greater when tasks arrive more rapidly, and when training technologies improve. Monitoring seniors' backlog of clients always increases welfare but may decrease training. Methodologically, we explore a matching setting with endogenous types, and illustrate useful adaptations of queueing theory techniques for such environments.</description><identifier>ISSN: 0898-2937</identifier><identifier>DOI: 10.3386/w29312</identifier><language>eng</language><publisher>Cambridge: National Bureau of Economic Research, Inc</publisher><subject>Economic theory</subject><ispartof>NBER Working Paper Series, 2021-09</ispartof><rights>Copyright National Bureau of Economic Research, Inc. Sep 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2649360132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>776,780,11668,27904,36039,44342</link.rule.ids></links><search><creatorcontrib>Baccara, Mariagiovanna</creatorcontrib><creatorcontrib>Lee, SangMok</creatorcontrib><creatorcontrib>Leeat Yariv</creatorcontrib><title>Task Allocation and On-the-job Training</title><title>NBER Working Paper Series</title><description>We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from centralization are greater when tasks arrive more rapidly, and when training technologies improve. Monitoring seniors' backlog of clients always increases welfare but may decrease training. Methodologically, we explore a matching setting with endogenous types, and illustrate useful adaptations of queueing theory techniques for such environments.</description><subject>Economic theory</subject><issn>0898-2937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotjcFOwzAQRH0oUkuh3xCJAydTezexvceqAlqpUi-5V7bjQNLIhjgVv08kOI3mafSGsY0UL4hGbX-AUMKCrYQhw-eil-w-514IMEbIFXuubb4Wu2FI3k5dioWNTXGOfPoMvE-uqEfbxS5-PLC71g45PP7nmtVvr_X-wE_n9-N-d-JBA3Cn2kZp50swlSVyldOASpeVJxIaSuUaZ2UlwRsTaF4aMWMnCX3rpA24Zk9_2q8xfd9Cni59uo1xfryAKgmVkAj4C2sTPKQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Baccara, Mariagiovanna</creator><creator>Lee, SangMok</creator><creator>Leeat Yariv</creator><general>National Bureau of Economic Research, Inc</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Task Allocation and On-the-job Training</title><author>Baccara, Mariagiovanna ; Lee, SangMok ; Leeat Yariv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e722-b6fd67bc4285a99b5b7236745c9907246bdba1512c88e967b80072b193cfb1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Economic theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Baccara, Mariagiovanna</creatorcontrib><creatorcontrib>Lee, SangMok</creatorcontrib><creatorcontrib>Leeat Yariv</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccara, Mariagiovanna</au><au>Lee, SangMok</au><au>Leeat Yariv</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Task Allocation and On-the-job Training</atitle><jtitle>NBER Working Paper Series</jtitle><date>2021-09-01</date><risdate>2021</risdate><issn>0898-2937</issn><abstract>We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from centralization are greater when tasks arrive more rapidly, and when training technologies improve. Monitoring seniors' backlog of clients always increases welfare but may decrease training. Methodologically, we explore a matching setting with endogenous types, and illustrate useful adaptations of queueing theory techniques for such environments.</abstract><cop>Cambridge</cop><pub>National Bureau of Economic Research, Inc</pub><doi>10.3386/w29312</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-2937 |
ispartof | NBER Working Paper Series, 2021-09 |
issn | 0898-2937 |
language | eng |
recordid | cdi_proquest_journals_2649360132 |
source | ABI/INFORM Global; Alma/SFX Local Collection |
subjects | Economic theory |
title | Task Allocation and On-the-job Training |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Task%20Allocation%20and%20On-the-job%20Training&rft.jtitle=NBER%20Working%20Paper%20Series&rft.au=Baccara,%20Mariagiovanna&rft.date=2021-09-01&rft.issn=0898-2937&rft_id=info:doi/10.3386/w29312&rft_dat=%3Cproquest%3E2649360132%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e722-b6fd67bc4285a99b5b7236745c9907246bdba1512c88e967b80072b193cfb1ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649360132&rft_id=info:pmid/&rfr_iscdi=true |