Loading…

Task Allocation and On-the-job Training

We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from c...

Full description

Saved in:
Bibliographic Details
Published in:NBER Working Paper Series 2021-09
Main Authors: Baccara, Mariagiovanna, Lee, SangMok, Leeat Yariv
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title NBER Working Paper Series
container_volume
creator Baccara, Mariagiovanna
Lee, SangMok
Leeat Yariv
description We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from centralization are greater when tasks arrive more rapidly, and when training technologies improve. Monitoring seniors' backlog of clients always increases welfare but may decrease training. Methodologically, we explore a matching setting with endogenous types, and illustrate useful adaptations of queueing theory techniques for such environments.
doi_str_mv 10.3386/w29312
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2649360132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649360132</sourcerecordid><originalsourceid>FETCH-LOGICAL-e722-b6fd67bc4285a99b5b7236745c9907246bdba1512c88e967b80072b193cfb1ae3</originalsourceid><addsrcrecordid>eNotjcFOwzAQRH0oUkuh3xCJAydTezexvceqAlqpUi-5V7bjQNLIhjgVv08kOI3mafSGsY0UL4hGbX-AUMKCrYQhw-eil-w-514IMEbIFXuubb4Wu2FI3k5dioWNTXGOfPoMvE-uqEfbxS5-PLC71g45PP7nmtVvr_X-wE_n9-N-d-JBA3Cn2kZp50swlSVyldOASpeVJxIaSuUaZ2UlwRsTaF4aMWMnCX3rpA24Zk9_2q8xfd9Cni59uo1xfryAKgmVkAj4C2sTPKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649360132</pqid></control><display><type>article</type><title>Task Allocation and On-the-job Training</title><source>ABI/INFORM Global</source><source>Alma/SFX Local Collection</source><creator>Baccara, Mariagiovanna ; Lee, SangMok ; Leeat Yariv</creator><creatorcontrib>Baccara, Mariagiovanna ; Lee, SangMok ; Leeat Yariv</creatorcontrib><description>We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from centralization are greater when tasks arrive more rapidly, and when training technologies improve. Monitoring seniors' backlog of clients always increases welfare but may decrease training. Methodologically, we explore a matching setting with endogenous types, and illustrate useful adaptations of queueing theory techniques for such environments.</description><identifier>ISSN: 0898-2937</identifier><identifier>DOI: 10.3386/w29312</identifier><language>eng</language><publisher>Cambridge: National Bureau of Economic Research, Inc</publisher><subject>Economic theory</subject><ispartof>NBER Working Paper Series, 2021-09</ispartof><rights>Copyright National Bureau of Economic Research, Inc. Sep 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2649360132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>776,780,11668,27904,36039,44342</link.rule.ids></links><search><creatorcontrib>Baccara, Mariagiovanna</creatorcontrib><creatorcontrib>Lee, SangMok</creatorcontrib><creatorcontrib>Leeat Yariv</creatorcontrib><title>Task Allocation and On-the-job Training</title><title>NBER Working Paper Series</title><description>We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from centralization are greater when tasks arrive more rapidly, and when training technologies improve. Monitoring seniors' backlog of clients always increases welfare but may decrease training. Methodologically, we explore a matching setting with endogenous types, and illustrate useful adaptations of queueing theory techniques for such environments.</description><subject>Economic theory</subject><issn>0898-2937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotjcFOwzAQRH0oUkuh3xCJAydTezexvceqAlqpUi-5V7bjQNLIhjgVv08kOI3mafSGsY0UL4hGbX-AUMKCrYQhw-eil-w-514IMEbIFXuubb4Wu2FI3k5dioWNTXGOfPoMvE-uqEfbxS5-PLC71g45PP7nmtVvr_X-wE_n9-N-d-JBA3Cn2kZp50swlSVyldOASpeVJxIaSuUaZ2UlwRsTaF4aMWMnCX3rpA24Zk9_2q8xfd9Cni59uo1xfryAKgmVkAj4C2sTPKQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Baccara, Mariagiovanna</creator><creator>Lee, SangMok</creator><creator>Leeat Yariv</creator><general>National Bureau of Economic Research, Inc</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Task Allocation and On-the-job Training</title><author>Baccara, Mariagiovanna ; Lee, SangMok ; Leeat Yariv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e722-b6fd67bc4285a99b5b7236745c9907246bdba1512c88e967b80072b193cfb1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Economic theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Baccara, Mariagiovanna</creatorcontrib><creatorcontrib>Lee, SangMok</creatorcontrib><creatorcontrib>Leeat Yariv</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccara, Mariagiovanna</au><au>Lee, SangMok</au><au>Leeat Yariv</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Task Allocation and On-the-job Training</atitle><jtitle>NBER Working Paper Series</jtitle><date>2021-09-01</date><risdate>2021</risdate><issn>0898-2937</issn><abstract>We study dynamic task allocation when providers' expertise evolves endogenously through training. We characterize optimal assignment protocols and compare them to discretionary procedures, where it is the clients who select their service providers. Our results indicate that welfare gains from centralization are greater when tasks arrive more rapidly, and when training technologies improve. Monitoring seniors' backlog of clients always increases welfare but may decrease training. Methodologically, we explore a matching setting with endogenous types, and illustrate useful adaptations of queueing theory techniques for such environments.</abstract><cop>Cambridge</cop><pub>National Bureau of Economic Research, Inc</pub><doi>10.3386/w29312</doi></addata></record>
fulltext fulltext
identifier ISSN: 0898-2937
ispartof NBER Working Paper Series, 2021-09
issn 0898-2937
language eng
recordid cdi_proquest_journals_2649360132
source ABI/INFORM Global; Alma/SFX Local Collection
subjects Economic theory
title Task Allocation and On-the-job Training
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Task%20Allocation%20and%20On-the-job%20Training&rft.jtitle=NBER%20Working%20Paper%20Series&rft.au=Baccara,%20Mariagiovanna&rft.date=2021-09-01&rft.issn=0898-2937&rft_id=info:doi/10.3386/w29312&rft_dat=%3Cproquest%3E2649360132%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e722-b6fd67bc4285a99b5b7236745c9907246bdba1512c88e967b80072b193cfb1ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649360132&rft_id=info:pmid/&rfr_iscdi=true