Loading…

Bootstrap Cointegration Tests in ARDL Models

The paper proposes a new bootstrap approach to the Pesaran, Shin and Smith's bound tests in a conditional equilibrium correction model with the aim to overcome some typical drawbacks of the latter, such as inconclusive inference and distortion in size. The bootstrap tests are worked out under s...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-04
Main Authors: Bertelli, Stefano, Vacca, Gianmarco, Zoia, Maria Grazia
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bertelli, Stefano
Vacca, Gianmarco
Zoia, Maria Grazia
description The paper proposes a new bootstrap approach to the Pesaran, Shin and Smith's bound tests in a conditional equilibrium correction model with the aim to overcome some typical drawbacks of the latter, such as inconclusive inference and distortion in size. The bootstrap tests are worked out under several data generating processes, including degenerate cases. Monte Carlo simulations confirm the better performance of the bootstrap tests with respect to bound ones and to the asymptotic F test on the independent variables of the ARDL model. It is also proved that any inference carried out in misspecified models, such as unconditional ARDLs, may be misleading. Empirical applications highlight the importance of employing the appropriate specification and provide definitive answers to the inconclusive inference of the bound tests when exploring the long-term equilibrium relationship between economic variables.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2649430656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649430656</sourcerecordid><originalsourceid>FETCH-proquest_journals_26494306563</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQccrPLykuKUosUHDOz8wrSU0vSizJzM9TCEktLilWyMxTcAxy8VHwzU9JzSnmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlQA3xWfmlRXlAqXgjMxNLE2MDM1MzY-JUAQBhATEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649430656</pqid></control><display><type>article</type><title>Bootstrap Cointegration Tests in ARDL Models</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bertelli, Stefano ; Vacca, Gianmarco ; Zoia, Maria Grazia</creator><creatorcontrib>Bertelli, Stefano ; Vacca, Gianmarco ; Zoia, Maria Grazia</creatorcontrib><description>The paper proposes a new bootstrap approach to the Pesaran, Shin and Smith's bound tests in a conditional equilibrium correction model with the aim to overcome some typical drawbacks of the latter, such as inconclusive inference and distortion in size. The bootstrap tests are worked out under several data generating processes, including degenerate cases. Monte Carlo simulations confirm the better performance of the bootstrap tests with respect to bound ones and to the asymptotic F test on the independent variables of the ARDL model. It is also proved that any inference carried out in misspecified models, such as unconditional ARDLs, may be misleading. Empirical applications highlight the importance of employing the appropriate specification and provide definitive answers to the inconclusive inference of the bound tests when exploring the long-term equilibrium relationship between economic variables.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Independent variables ; Inference ; Regression analysis</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2649430656?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bertelli, Stefano</creatorcontrib><creatorcontrib>Vacca, Gianmarco</creatorcontrib><creatorcontrib>Zoia, Maria Grazia</creatorcontrib><title>Bootstrap Cointegration Tests in ARDL Models</title><title>arXiv.org</title><description>The paper proposes a new bootstrap approach to the Pesaran, Shin and Smith's bound tests in a conditional equilibrium correction model with the aim to overcome some typical drawbacks of the latter, such as inconclusive inference and distortion in size. The bootstrap tests are worked out under several data generating processes, including degenerate cases. Monte Carlo simulations confirm the better performance of the bootstrap tests with respect to bound ones and to the asymptotic F test on the independent variables of the ARDL model. It is also proved that any inference carried out in misspecified models, such as unconditional ARDLs, may be misleading. Empirical applications highlight the importance of employing the appropriate specification and provide definitive answers to the inconclusive inference of the bound tests when exploring the long-term equilibrium relationship between economic variables.</description><subject>Independent variables</subject><subject>Inference</subject><subject>Regression analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQccrPLykuKUosUHDOz8wrSU0vSizJzM9TCEktLilWyMxTcAxy8VHwzU9JzSnmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlQA3xWfmlRXlAqXgjMxNLE2MDM1MzY-JUAQBhATEw</recordid><startdate>20220411</startdate><enddate>20220411</enddate><creator>Bertelli, Stefano</creator><creator>Vacca, Gianmarco</creator><creator>Zoia, Maria Grazia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220411</creationdate><title>Bootstrap Cointegration Tests in ARDL Models</title><author>Bertelli, Stefano ; Vacca, Gianmarco ; Zoia, Maria Grazia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26494306563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Independent variables</topic><topic>Inference</topic><topic>Regression analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Bertelli, Stefano</creatorcontrib><creatorcontrib>Vacca, Gianmarco</creatorcontrib><creatorcontrib>Zoia, Maria Grazia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertelli, Stefano</au><au>Vacca, Gianmarco</au><au>Zoia, Maria Grazia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bootstrap Cointegration Tests in ARDL Models</atitle><jtitle>arXiv.org</jtitle><date>2022-04-11</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The paper proposes a new bootstrap approach to the Pesaran, Shin and Smith's bound tests in a conditional equilibrium correction model with the aim to overcome some typical drawbacks of the latter, such as inconclusive inference and distortion in size. The bootstrap tests are worked out under several data generating processes, including degenerate cases. Monte Carlo simulations confirm the better performance of the bootstrap tests with respect to bound ones and to the asymptotic F test on the independent variables of the ARDL model. It is also proved that any inference carried out in misspecified models, such as unconditional ARDLs, may be misleading. Empirical applications highlight the importance of employing the appropriate specification and provide definitive answers to the inconclusive inference of the bound tests when exploring the long-term equilibrium relationship between economic variables.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2649430656
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Independent variables
Inference
Regression analysis
title Bootstrap Cointegration Tests in ARDL Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bootstrap%20Cointegration%20Tests%20in%20ARDL%20Models&rft.jtitle=arXiv.org&rft.au=Bertelli,%20Stefano&rft.date=2022-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2649430656%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26494306563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649430656&rft_id=info:pmid/&rfr_iscdi=true