Loading…

Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)

We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle deg...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Burgos Gil, José Ignacio, Cauchi, Antonio, Lemma, Francesco, Joaquín Rodrigues Jacinto
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Burgos Gil, José Ignacio
Cauchi, Antonio
Lemma, Francesco
Joaquín Rodrigues Jacinto
description We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle degree plus one motivic cohomology of Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate the integrals to noncritical special values of the degree \(8\) Spin \(L\)-functions, as predicted by Beilinson conjectures.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2649432610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649432610</sourcerecordid><originalsourceid>FETCH-proquest_journals_26494326103</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgKOodHrhRUKhJrbr2u7fLQgn1aSJNXkxSRcS768IDuJrFzLRYlwsxmy5TzjtsEMI1SRKeLfh8LrpM5WgcejxB1XiPNgaQ9gQbrPXFIlSkyFBNlyfQGY5Km8ZLuEuvMWoME3joqL4HSOdqXcmoyUIkKEaFkVF589of3bvMinGftc-yDjj4sceGu22-Pkydp1uDIZZXarz9qpJn6SoVPJsl4r_qA2LSR7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649432610</pqid></control><display><type>article</type><title>Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Burgos Gil, José Ignacio ; Cauchi, Antonio ; Lemma, Francesco ; Joaquín Rodrigues Jacinto</creator><creatorcontrib>Burgos Gil, José Ignacio ; Cauchi, Antonio ; Lemma, Francesco ; Joaquín Rodrigues Jacinto</creatorcontrib><description>We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle degree plus one motivic cohomology of Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate the integrals to noncritical special values of the degree \(8\) Spin \(L\)-functions, as predicted by Beilinson conjectures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Integrals</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2649432610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Burgos Gil, José Ignacio</creatorcontrib><creatorcontrib>Cauchi, Antonio</creatorcontrib><creatorcontrib>Lemma, Francesco</creatorcontrib><creatorcontrib>Joaquín Rodrigues Jacinto</creatorcontrib><title>Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)</title><title>arXiv.org</title><description>We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle degree plus one motivic cohomology of Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate the integrals to noncritical special values of the degree \(8\) Spin \(L\)-functions, as predicted by Beilinson conjectures.</description><subject>Homology</subject><subject>Integrals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0sKwjAUAIMgKOodHrhRUKhJrbr2u7fLQgn1aSJNXkxSRcS768IDuJrFzLRYlwsxmy5TzjtsEMI1SRKeLfh8LrpM5WgcejxB1XiPNgaQ9gQbrPXFIlSkyFBNlyfQGY5Km8ZLuEuvMWoME3joqL4HSOdqXcmoyUIkKEaFkVF589of3bvMinGftc-yDjj4sceGu22-Pkydp1uDIZZXarz9qpJn6SoVPJsl4r_qA2LSR7s</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Burgos Gil, José Ignacio</creator><creator>Cauchi, Antonio</creator><creator>Lemma, Francesco</creator><creator>Joaquín Rodrigues Jacinto</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240926</creationdate><title>Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)</title><author>Burgos Gil, José Ignacio ; Cauchi, Antonio ; Lemma, Francesco ; Joaquín Rodrigues Jacinto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26494326103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Homology</topic><topic>Integrals</topic><toplevel>online_resources</toplevel><creatorcontrib>Burgos Gil, José Ignacio</creatorcontrib><creatorcontrib>Cauchi, Antonio</creatorcontrib><creatorcontrib>Lemma, Francesco</creatorcontrib><creatorcontrib>Joaquín Rodrigues Jacinto</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgos Gil, José Ignacio</au><au>Cauchi, Antonio</au><au>Lemma, Francesco</au><au>Joaquín Rodrigues Jacinto</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)</atitle><jtitle>arXiv.org</jtitle><date>2024-09-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle degree plus one motivic cohomology of Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate the integrals to noncritical special values of the degree \(8\) Spin \(L\)-functions, as predicted by Beilinson conjectures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2649432610
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Homology
Integrals
title Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Tempered%20currents%20and%20Deligne%20cohomology%20of%20Shimura%20varieties,%20with%20an%20application%20to%20%5C(%5Cmathrm%7BGSp%7D_6%5C)&rft.jtitle=arXiv.org&rft.au=Burgos%20Gil,%20Jos%C3%A9%20Ignacio&rft.date=2024-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2649432610%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26494326103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649432610&rft_id=info:pmid/&rfr_iscdi=true