Loading…
Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)
We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle deg...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Burgos Gil, José Ignacio Cauchi, Antonio Lemma, Francesco Joaquín Rodrigues Jacinto |
description | We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle degree plus one motivic cohomology of Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate the integrals to noncritical special values of the degree \(8\) Spin \(L\)-functions, as predicted by Beilinson conjectures. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2649432610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649432610</sourcerecordid><originalsourceid>FETCH-proquest_journals_26494326103</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgKOodHrhRUKhJrbr2u7fLQgn1aSJNXkxSRcS768IDuJrFzLRYlwsxmy5TzjtsEMI1SRKeLfh8LrpM5WgcejxB1XiPNgaQ9gQbrPXFIlSkyFBNlyfQGY5Km8ZLuEuvMWoME3joqL4HSOdqXcmoyUIkKEaFkVF589of3bvMinGftc-yDjj4sceGu22-Pkydp1uDIZZXarz9qpJn6SoVPJsl4r_qA2LSR7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649432610</pqid></control><display><type>article</type><title>Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Burgos Gil, José Ignacio ; Cauchi, Antonio ; Lemma, Francesco ; Joaquín Rodrigues Jacinto</creator><creatorcontrib>Burgos Gil, José Ignacio ; Cauchi, Antonio ; Lemma, Francesco ; Joaquín Rodrigues Jacinto</creatorcontrib><description>We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle degree plus one motivic cohomology of Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate the integrals to noncritical special values of the degree \(8\) Spin \(L\)-functions, as predicted by Beilinson conjectures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Integrals</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2649432610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Burgos Gil, José Ignacio</creatorcontrib><creatorcontrib>Cauchi, Antonio</creatorcontrib><creatorcontrib>Lemma, Francesco</creatorcontrib><creatorcontrib>Joaquín Rodrigues Jacinto</creatorcontrib><title>Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)</title><title>arXiv.org</title><description>We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle degree plus one motivic cohomology of Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate the integrals to noncritical special values of the degree \(8\) Spin \(L\)-functions, as predicted by Beilinson conjectures.</description><subject>Homology</subject><subject>Integrals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0sKwjAUAIMgKOodHrhRUKhJrbr2u7fLQgn1aSJNXkxSRcS768IDuJrFzLRYlwsxmy5TzjtsEMI1SRKeLfh8LrpM5WgcejxB1XiPNgaQ9gQbrPXFIlSkyFBNlyfQGY5Km8ZLuEuvMWoME3joqL4HSOdqXcmoyUIkKEaFkVF589of3bvMinGftc-yDjj4sceGu22-Pkydp1uDIZZXarz9qpJn6SoVPJsl4r_qA2LSR7s</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Burgos Gil, José Ignacio</creator><creator>Cauchi, Antonio</creator><creator>Lemma, Francesco</creator><creator>Joaquín Rodrigues Jacinto</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240926</creationdate><title>Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)</title><author>Burgos Gil, José Ignacio ; Cauchi, Antonio ; Lemma, Francesco ; Joaquín Rodrigues Jacinto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26494326103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Homology</topic><topic>Integrals</topic><toplevel>online_resources</toplevel><creatorcontrib>Burgos Gil, José Ignacio</creatorcontrib><creatorcontrib>Cauchi, Antonio</creatorcontrib><creatorcontrib>Lemma, Francesco</creatorcontrib><creatorcontrib>Joaquín Rodrigues Jacinto</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgos Gil, José Ignacio</au><au>Cauchi, Antonio</au><au>Lemma, Francesco</au><au>Joaquín Rodrigues Jacinto</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\)</atitle><jtitle>arXiv.org</jtitle><date>2024-09-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We provide a new description of Deligne-Beilinson cohomology for any Shimura variety in terms of tempered currents. This is particularly useful for computations of regulators of motivic classes and hence to the study of Beilinson conjectures. As an application, we construct classes in the middle degree plus one motivic cohomology of Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate the integrals to noncritical special values of the degree \(8\) Spin \(L\)-functions, as predicted by Beilinson conjectures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2649432610 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Homology Integrals |
title | Tempered currents and Deligne cohomology of Shimura varieties, with an application to \(\mathrm{GSp}_6\) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Tempered%20currents%20and%20Deligne%20cohomology%20of%20Shimura%20varieties,%20with%20an%20application%20to%20%5C(%5Cmathrm%7BGSp%7D_6%5C)&rft.jtitle=arXiv.org&rft.au=Burgos%20Gil,%20Jos%C3%A9%20Ignacio&rft.date=2024-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2649432610%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26494326103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649432610&rft_id=info:pmid/&rfr_iscdi=true |