Loading…

Embedded Split Ring Resonator Tunable Notch Band Filter in Microstrip Transmission Lines

Novel design techniques for tunable and fixed frequency notch band filters are presented and validated with experiments. A notch band filter based on an Embedded Split Ring Resonator (ESRR) in a Microstrip Transmission Line (MTL) is presented. The physical dimensions of the ESRR determine the filter...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.37294-37304
Main Authors: Farzami, Farhad, Khaledian, Seiran, Stutts, Alex C., Smida, Besma, Erricolo, Danilo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel design techniques for tunable and fixed frequency notch band filters are presented and validated with experiments. A notch band filter based on an Embedded Split Ring Resonator (ESRR) in a Microstrip Transmission Line (MTL) is presented. The physical dimensions of the ESRR determine the filter resonance frequency, which, when combined with a Varactor (Varactor Loaded ESRRs or VLESRRs), provides a continuously tunable resonance frequency. Tunable notch bands centered from 1.7 GHz to 4.8 GHz are obtained with resonators having an unprecedented electric length of 0.05~\lambda _{0} at the lowest frequency, corresponding to a physical length of 7 mm and a total occupied area of 8.5 mm 2 . Two or more ESRRs are proposed to provide a deeper single notch band, a wider notch band, and/or multi notch bands. The proposed ESRRs are used jointly with a trapezoidal antenna to form 1) a notch band at 2.5 GHz; and, 2) dual notch bands at 2.5 GHz and 3.5 GHz. In addition, ESRRs are used in a Low Pass Filter (LPF) with cutoff frequency of 1 GHz to suppress undesired harmonic at 3.46 GHz and improve band rejection. The proposed MTL loaded by ESRRs, LPF and trapezoidal antenna are fabricated, measured and the results of simulations and measurements are in good agreement.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3164699