Loading…

Global contextual guided residual attention network for salient object detection

High-level semantic features and low-level detail features matter for salient object detection in fully convolutional neural networks (FCNs). Further integration of low-level and high-level features increases the ability to map salient object features. In addition, different channels in the same fea...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-04, Vol.52 (6), p.6208-6226
Main Authors: Wang, Jun, Zhao, Zhengyun, Yang, Shangqin, Chai, Xiuli, Zhang, Wanjun, Zhang, Miaohui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-2d1e88316da2ff07dda8ba275430539942d0e74987b09917956e7d8435d764103
cites cdi_FETCH-LOGICAL-c249t-2d1e88316da2ff07dda8ba275430539942d0e74987b09917956e7d8435d764103
container_end_page 6226
container_issue 6
container_start_page 6208
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 52
creator Wang, Jun
Zhao, Zhengyun
Yang, Shangqin
Chai, Xiuli
Zhang, Wanjun
Zhang, Miaohui
description High-level semantic features and low-level detail features matter for salient object detection in fully convolutional neural networks (FCNs). Further integration of low-level and high-level features increases the ability to map salient object features. In addition, different channels in the same feature are not of equal importance to saliency detection. In this paper, we propose a residual attention learning strategy and a multistage refinement mechanism to gradually refine the coarse prediction in a scale-by-scale manner. First, a global information complementary (GIC) module is designed by integrating low-level detailed features and high-level semantic features. Second, to extract multiscale features of the same layer, a multiscale parallel convolutional (MPC) module is employed. Afterwards, we present a residual attention mechanism module (RAM) to receive the feature maps of adjacent stages, which are from the hybrid feature cascaded aggregation (HFCA) module. The HFCA aims to enhance feature maps, which reduce the loss of spatial details and the impact of varying the shape, scale and position of the object. Finally, we adopt multiscale cross-entropy loss to guide network learning salient features. Experimental results on six benchmark datasets demonstrate that the proposed method significantly outperforms 15 state-of-the-art methods under various evaluation metrics.
doi_str_mv 10.1007/s10489-021-02713-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649845107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649845107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-2d1e88316da2ff07dda8ba275430539942d0e74987b09917956e7d8435d764103</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8VycfbZKjLLoKC3pQ8BbSJl1aa7MmKeq_N2sFbx6GNzO892Z4CJ0TuCQA4ioS4FIVQEkuQVghD9CClIIVgitxiBagKC-qSr0co5MYewBgDMgCPa4HX5sBN35M7jNNud1OnXUWBxc7u59NSm5MnR_x6NKHD6-49QFHM3R5jX3duyZh61KGTDpFR60Zojv7xSV6vr15Wt0Vm4f1_ep6UzSUq1RQS5yUjFTW0LYFYa2RtaGi5AxKphSnFlz-XYoalCJClZUTVnJWWlFxAmyJLmbfXfDvk4tJ934KYz6paZV1vCQgMovOrCb4GINr9S50byZ8aQJ6n5yek9M5Of2TnJZZxGZRzORx68Kf9T-qb3uvcL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649845107</pqid></control><display><type>article</type><title>Global contextual guided residual attention network for salient object detection</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Wang, Jun ; Zhao, Zhengyun ; Yang, Shangqin ; Chai, Xiuli ; Zhang, Wanjun ; Zhang, Miaohui</creator><creatorcontrib>Wang, Jun ; Zhao, Zhengyun ; Yang, Shangqin ; Chai, Xiuli ; Zhang, Wanjun ; Zhang, Miaohui</creatorcontrib><description>High-level semantic features and low-level detail features matter for salient object detection in fully convolutional neural networks (FCNs). Further integration of low-level and high-level features increases the ability to map salient object features. In addition, different channels in the same feature are not of equal importance to saliency detection. In this paper, we propose a residual attention learning strategy and a multistage refinement mechanism to gradually refine the coarse prediction in a scale-by-scale manner. First, a global information complementary (GIC) module is designed by integrating low-level detailed features and high-level semantic features. Second, to extract multiscale features of the same layer, a multiscale parallel convolutional (MPC) module is employed. Afterwards, we present a residual attention mechanism module (RAM) to receive the feature maps of adjacent stages, which are from the hybrid feature cascaded aggregation (HFCA) module. The HFCA aims to enhance feature maps, which reduce the loss of spatial details and the impact of varying the shape, scale and position of the object. Finally, we adopt multiscale cross-entropy loss to guide network learning salient features. Experimental results on six benchmark datasets demonstrate that the proposed method significantly outperforms 15 state-of-the-art methods under various evaluation metrics.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-021-02713-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computer Science ; Feature extraction ; Feature maps ; Learning ; Machines ; Manufacturing ; Mechanical Engineering ; Modules ; Object recognition ; Processes ; Salience ; Semantics</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2022-04, Vol.52 (6), p.6208-6226</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-2d1e88316da2ff07dda8ba275430539942d0e74987b09917956e7d8435d764103</citedby><cites>FETCH-LOGICAL-c249t-2d1e88316da2ff07dda8ba275430539942d0e74987b09917956e7d8435d764103</cites><orcidid>0000-0001-5146-6781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2649845107/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2649845107?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Zhao, Zhengyun</creatorcontrib><creatorcontrib>Yang, Shangqin</creatorcontrib><creatorcontrib>Chai, Xiuli</creatorcontrib><creatorcontrib>Zhang, Wanjun</creatorcontrib><creatorcontrib>Zhang, Miaohui</creatorcontrib><title>Global contextual guided residual attention network for salient object detection</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>High-level semantic features and low-level detail features matter for salient object detection in fully convolutional neural networks (FCNs). Further integration of low-level and high-level features increases the ability to map salient object features. In addition, different channels in the same feature are not of equal importance to saliency detection. In this paper, we propose a residual attention learning strategy and a multistage refinement mechanism to gradually refine the coarse prediction in a scale-by-scale manner. First, a global information complementary (GIC) module is designed by integrating low-level detailed features and high-level semantic features. Second, to extract multiscale features of the same layer, a multiscale parallel convolutional (MPC) module is employed. Afterwards, we present a residual attention mechanism module (RAM) to receive the feature maps of adjacent stages, which are from the hybrid feature cascaded aggregation (HFCA) module. The HFCA aims to enhance feature maps, which reduce the loss of spatial details and the impact of varying the shape, scale and position of the object. Finally, we adopt multiscale cross-entropy loss to guide network learning salient features. Experimental results on six benchmark datasets demonstrate that the proposed method significantly outperforms 15 state-of-the-art methods under various evaluation metrics.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Processes</subject><subject>Salience</subject><subject>Semantics</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8VycfbZKjLLoKC3pQ8BbSJl1aa7MmKeq_N2sFbx6GNzO892Z4CJ0TuCQA4ioS4FIVQEkuQVghD9CClIIVgitxiBagKC-qSr0co5MYewBgDMgCPa4HX5sBN35M7jNNud1OnXUWBxc7u59NSm5MnR_x6NKHD6-49QFHM3R5jX3duyZh61KGTDpFR60Zojv7xSV6vr15Wt0Vm4f1_ep6UzSUq1RQS5yUjFTW0LYFYa2RtaGi5AxKphSnFlz-XYoalCJClZUTVnJWWlFxAmyJLmbfXfDvk4tJ934KYz6paZV1vCQgMovOrCb4GINr9S50byZ8aQJ6n5yek9M5Of2TnJZZxGZRzORx68Kf9T-qb3uvcL4</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Wang, Jun</creator><creator>Zhao, Zhengyun</creator><creator>Yang, Shangqin</creator><creator>Chai, Xiuli</creator><creator>Zhang, Wanjun</creator><creator>Zhang, Miaohui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5146-6781</orcidid></search><sort><creationdate>20220401</creationdate><title>Global contextual guided residual attention network for salient object detection</title><author>Wang, Jun ; Zhao, Zhengyun ; Yang, Shangqin ; Chai, Xiuli ; Zhang, Wanjun ; Zhang, Miaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-2d1e88316da2ff07dda8ba275430539942d0e74987b09917956e7d8435d764103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Processes</topic><topic>Salience</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Zhao, Zhengyun</creatorcontrib><creatorcontrib>Yang, Shangqin</creatorcontrib><creatorcontrib>Chai, Xiuli</creatorcontrib><creatorcontrib>Zhang, Wanjun</creatorcontrib><creatorcontrib>Zhang, Miaohui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jun</au><au>Zhao, Zhengyun</au><au>Yang, Shangqin</au><au>Chai, Xiuli</au><au>Zhang, Wanjun</au><au>Zhang, Miaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global contextual guided residual attention network for salient object detection</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>52</volume><issue>6</issue><spage>6208</spage><epage>6226</epage><pages>6208-6226</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>High-level semantic features and low-level detail features matter for salient object detection in fully convolutional neural networks (FCNs). Further integration of low-level and high-level features increases the ability to map salient object features. In addition, different channels in the same feature are not of equal importance to saliency detection. In this paper, we propose a residual attention learning strategy and a multistage refinement mechanism to gradually refine the coarse prediction in a scale-by-scale manner. First, a global information complementary (GIC) module is designed by integrating low-level detailed features and high-level semantic features. Second, to extract multiscale features of the same layer, a multiscale parallel convolutional (MPC) module is employed. Afterwards, we present a residual attention mechanism module (RAM) to receive the feature maps of adjacent stages, which are from the hybrid feature cascaded aggregation (HFCA) module. The HFCA aims to enhance feature maps, which reduce the loss of spatial details and the impact of varying the shape, scale and position of the object. Finally, we adopt multiscale cross-entropy loss to guide network learning salient features. Experimental results on six benchmark datasets demonstrate that the proposed method significantly outperforms 15 state-of-the-art methods under various evaluation metrics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-021-02713-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5146-6781</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2022-04, Vol.52 (6), p.6208-6226
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2649845107
source ABI/INFORM Global; Springer Link
subjects Artificial Intelligence
Artificial neural networks
Computer Science
Feature extraction
Feature maps
Learning
Machines
Manufacturing
Mechanical Engineering
Modules
Object recognition
Processes
Salience
Semantics
title Global contextual guided residual attention network for salient object detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20contextual%20guided%20residual%20attention%20network%20for%20salient%20object%20detection&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Wang,%20Jun&rft.date=2022-04-01&rft.volume=52&rft.issue=6&rft.spage=6208&rft.epage=6226&rft.pages=6208-6226&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-021-02713-8&rft_dat=%3Cproquest_cross%3E2649845107%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-2d1e88316da2ff07dda8ba275430539942d0e74987b09917956e7d8435d764103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649845107&rft_id=info:pmid/&rfr_iscdi=true