Loading…

On the Space Analyticity of the Nernst–Planck–Navier–Stokes system

We consider the forced Nernst–Planck–Navier–Stokes system for n ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical fluid mechanics 2022-05, Vol.24 (2), Article 51
Main Authors: Abdo, Elie, Ignatova, Mihaela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3
cites cdi_FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3
container_end_page
container_issue 2
container_start_page
container_title Journal of mathematical fluid mechanics
container_volume 24
creator Abdo, Elie
Ignatova, Mihaela
description We consider the forced Nernst–Planck–Navier–Stokes system for n ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends uniquely and remains analytic on any time interval [0,  T ]. In the three dimensional case, we give necessary and sufficient conditions for the global in time existence of analytic solutions. These conditions involve quantitatively only low regularity norms of the fluid velocity and concentrations.
doi_str_mv 10.1007/s00021-022-00665-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650012465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650012465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWAcmjh0ny6oCilS1SIW1NbEdSH-SYrtI2fUO3JCTYBoEO1bzRvPeaOYj5DKB6wRA3DgAoEkMlMYAWcbj_IgMEhbarOD0-FfT_JScObcESAQv6IBM5k3kX0202KIy0ajBdedrVfsuaqvDYGZs4_zn_uNxjY1aBTHD99rYIBa-XRkXuc55szknJxWunbn4qUPyfHf7NJ7E0_n9w3g0jRVlhY81lgLzVOTGoELNTFFWChKFjEIJoDRqUZS6qLjOmNalwkKUGQjOeIq5KdMhuer3bm37tjPOy2W7s-FuJ2nGw1-UZTy4aO9StnXOmkpubb1B28kE5Dcx2ROTgZg8EJN5CKV9yAVz82Ls3-p_Ul_MlHIx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650012465</pqid></control><display><type>article</type><title>On the Space Analyticity of the Nernst–Planck–Navier–Stokes system</title><source>Springer Nature</source><creator>Abdo, Elie ; Ignatova, Mihaela</creator><creatorcontrib>Abdo, Elie ; Ignatova, Mihaela</creatorcontrib><description>We consider the forced Nernst–Planck–Navier–Stokes system for n ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends uniquely and remains analytic on any time interval [0,  T ]. In the three dimensional case, we give necessary and sufficient conditions for the global in time existence of analytic solutions. These conditions involve quantitatively only low regularity norms of the fluid velocity and concentrations.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-022-00665-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Exact solutions ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Mathematical analysis ; Mathematical Methods in Physics ; Navier-Stokes equations ; Norms ; Physics ; Physics and Astronomy ; Species diffusion ; Theoretical mathematics</subject><ispartof>Journal of mathematical fluid mechanics, 2022-05, Vol.24 (2), Article 51</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3</citedby><cites>FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3</cites><orcidid>0000-0002-1461-7365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdo, Elie</creatorcontrib><creatorcontrib>Ignatova, Mihaela</creatorcontrib><title>On the Space Analyticity of the Nernst–Planck–Navier–Stokes system</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>We consider the forced Nernst–Planck–Navier–Stokes system for n ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends uniquely and remains analytic on any time interval [0,  T ]. In the three dimensional case, we give necessary and sufficient conditions for the global in time existence of analytic solutions. These conditions involve quantitatively only low regularity norms of the fluid velocity and concentrations.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Navier-Stokes equations</subject><subject>Norms</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Species diffusion</subject><subject>Theoretical mathematics</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWAcmjh0ny6oCilS1SIW1NbEdSH-SYrtI2fUO3JCTYBoEO1bzRvPeaOYj5DKB6wRA3DgAoEkMlMYAWcbj_IgMEhbarOD0-FfT_JScObcESAQv6IBM5k3kX0202KIy0ajBdedrVfsuaqvDYGZs4_zn_uNxjY1aBTHD99rYIBa-XRkXuc55szknJxWunbn4qUPyfHf7NJ7E0_n9w3g0jRVlhY81lgLzVOTGoELNTFFWChKFjEIJoDRqUZS6qLjOmNalwkKUGQjOeIq5KdMhuer3bm37tjPOy2W7s-FuJ2nGw1-UZTy4aO9StnXOmkpubb1B28kE5Dcx2ROTgZg8EJN5CKV9yAVz82Ls3-p_Ul_MlHIx</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Abdo, Elie</creator><creator>Ignatova, Mihaela</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1461-7365</orcidid></search><sort><creationdate>20220501</creationdate><title>On the Space Analyticity of the Nernst–Planck–Navier–Stokes system</title><author>Abdo, Elie ; Ignatova, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Navier-Stokes equations</topic><topic>Norms</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Species diffusion</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdo, Elie</creatorcontrib><creatorcontrib>Ignatova, Mihaela</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdo, Elie</au><au>Ignatova, Mihaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Space Analyticity of the Nernst–Planck–Navier–Stokes system</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><artnum>51</artnum><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>We consider the forced Nernst–Planck–Navier–Stokes system for n ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends uniquely and remains analytic on any time interval [0,  T ]. In the three dimensional case, we give necessary and sufficient conditions for the global in time existence of analytic solutions. These conditions involve quantitatively only low regularity norms of the fluid velocity and concentrations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-022-00665-8</doi><orcidid>https://orcid.org/0000-0002-1461-7365</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1422-6928
ispartof Journal of mathematical fluid mechanics, 2022-05, Vol.24 (2), Article 51
issn 1422-6928
1422-6952
language eng
recordid cdi_proquest_journals_2650012465
source Springer Nature
subjects Boundary conditions
Classical and Continuum Physics
Exact solutions
Fluid flow
Fluid mechanics
Fluid- and Aerodynamics
Mathematical analysis
Mathematical Methods in Physics
Navier-Stokes equations
Norms
Physics
Physics and Astronomy
Species diffusion
Theoretical mathematics
title On the Space Analyticity of the Nernst–Planck–Navier–Stokes system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Space%20Analyticity%20of%20the%20Nernst%E2%80%93Planck%E2%80%93Navier%E2%80%93Stokes%20system&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Abdo,%20Elie&rft.date=2022-05-01&rft.volume=24&rft.issue=2&rft.artnum=51&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-022-00665-8&rft_dat=%3Cproquest_cross%3E2650012465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650012465&rft_id=info:pmid/&rfr_iscdi=true