Loading…
On the Space Analyticity of the Nernst–Planck–Navier–Stokes system
We consider the forced Nernst–Planck–Navier–Stokes system for n ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends...
Saved in:
Published in: | Journal of mathematical fluid mechanics 2022-05, Vol.24 (2), Article 51 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Journal of mathematical fluid mechanics |
container_volume | 24 |
creator | Abdo, Elie Ignatova, Mihaela |
description | We consider the forced Nernst–Planck–Navier–Stokes system for
n
ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends uniquely and remains analytic on any time interval [0,
T
]. In the three dimensional case, we give necessary and sufficient conditions for the global in time existence of analytic solutions. These conditions involve quantitatively only low regularity norms of the fluid velocity and concentrations. |
doi_str_mv | 10.1007/s00021-022-00665-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650012465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650012465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWAcmjh0ny6oCilS1SIW1NbEdSH-SYrtI2fUO3JCTYBoEO1bzRvPeaOYj5DKB6wRA3DgAoEkMlMYAWcbj_IgMEhbarOD0-FfT_JScObcESAQv6IBM5k3kX0202KIy0ajBdedrVfsuaqvDYGZs4_zn_uNxjY1aBTHD99rYIBa-XRkXuc55szknJxWunbn4qUPyfHf7NJ7E0_n9w3g0jRVlhY81lgLzVOTGoELNTFFWChKFjEIJoDRqUZS6qLjOmNalwkKUGQjOeIq5KdMhuer3bm37tjPOy2W7s-FuJ2nGw1-UZTy4aO9StnXOmkpubb1B28kE5Dcx2ROTgZg8EJN5CKV9yAVz82Ls3-p_Ul_MlHIx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650012465</pqid></control><display><type>article</type><title>On the Space Analyticity of the Nernst–Planck–Navier–Stokes system</title><source>Springer Nature</source><creator>Abdo, Elie ; Ignatova, Mihaela</creator><creatorcontrib>Abdo, Elie ; Ignatova, Mihaela</creatorcontrib><description>We consider the forced Nernst–Planck–Navier–Stokes system for
n
ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends uniquely and remains analytic on any time interval [0,
T
]. In the three dimensional case, we give necessary and sufficient conditions for the global in time existence of analytic solutions. These conditions involve quantitatively only low regularity norms of the fluid velocity and concentrations.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-022-00665-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Exact solutions ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Mathematical analysis ; Mathematical Methods in Physics ; Navier-Stokes equations ; Norms ; Physics ; Physics and Astronomy ; Species diffusion ; Theoretical mathematics</subject><ispartof>Journal of mathematical fluid mechanics, 2022-05, Vol.24 (2), Article 51</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3</citedby><cites>FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3</cites><orcidid>0000-0002-1461-7365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdo, Elie</creatorcontrib><creatorcontrib>Ignatova, Mihaela</creatorcontrib><title>On the Space Analyticity of the Nernst–Planck–Navier–Stokes system</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>We consider the forced Nernst–Planck–Navier–Stokes system for
n
ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends uniquely and remains analytic on any time interval [0,
T
]. In the three dimensional case, we give necessary and sufficient conditions for the global in time existence of analytic solutions. These conditions involve quantitatively only low regularity norms of the fluid velocity and concentrations.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Navier-Stokes equations</subject><subject>Norms</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Species diffusion</subject><subject>Theoretical mathematics</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWAcmjh0ny6oCilS1SIW1NbEdSH-SYrtI2fUO3JCTYBoEO1bzRvPeaOYj5DKB6wRA3DgAoEkMlMYAWcbj_IgMEhbarOD0-FfT_JScObcESAQv6IBM5k3kX0202KIy0ajBdedrVfsuaqvDYGZs4_zn_uNxjY1aBTHD99rYIBa-XRkXuc55szknJxWunbn4qUPyfHf7NJ7E0_n9w3g0jRVlhY81lgLzVOTGoELNTFFWChKFjEIJoDRqUZS6qLjOmNalwkKUGQjOeIq5KdMhuer3bm37tjPOy2W7s-FuJ2nGw1-UZTy4aO9StnXOmkpubb1B28kE5Dcx2ROTgZg8EJN5CKV9yAVz82Ls3-p_Ul_MlHIx</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Abdo, Elie</creator><creator>Ignatova, Mihaela</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1461-7365</orcidid></search><sort><creationdate>20220501</creationdate><title>On the Space Analyticity of the Nernst–Planck–Navier–Stokes system</title><author>Abdo, Elie ; Ignatova, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Navier-Stokes equations</topic><topic>Norms</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Species diffusion</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdo, Elie</creatorcontrib><creatorcontrib>Ignatova, Mihaela</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdo, Elie</au><au>Ignatova, Mihaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Space Analyticity of the Nernst–Planck–Navier–Stokes system</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><artnum>51</artnum><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>We consider the forced Nernst–Planck–Navier–Stokes system for
n
ionic species with different diffusivities and valences. We prove the local existence of analytic solutions with periodic boundary conditions in two and three dimensions. In the case of two spatial dimensions, the local solution extends uniquely and remains analytic on any time interval [0,
T
]. In the three dimensional case, we give necessary and sufficient conditions for the global in time existence of analytic solutions. These conditions involve quantitatively only low regularity norms of the fluid velocity and concentrations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-022-00665-8</doi><orcidid>https://orcid.org/0000-0002-1461-7365</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-6928 |
ispartof | Journal of mathematical fluid mechanics, 2022-05, Vol.24 (2), Article 51 |
issn | 1422-6928 1422-6952 |
language | eng |
recordid | cdi_proquest_journals_2650012465 |
source | Springer Nature |
subjects | Boundary conditions Classical and Continuum Physics Exact solutions Fluid flow Fluid mechanics Fluid- and Aerodynamics Mathematical analysis Mathematical Methods in Physics Navier-Stokes equations Norms Physics Physics and Astronomy Species diffusion Theoretical mathematics |
title | On the Space Analyticity of the Nernst–Planck–Navier–Stokes system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Space%20Analyticity%20of%20the%20Nernst%E2%80%93Planck%E2%80%93Navier%E2%80%93Stokes%20system&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Abdo,%20Elie&rft.date=2022-05-01&rft.volume=24&rft.issue=2&rft.artnum=51&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-022-00665-8&rft_dat=%3Cproquest_cross%3E2650012465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-dab7a8378eeacad4e9bfc01ca420b00cdad79bd9f5d64ddbca97b6075453a8eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650012465&rft_id=info:pmid/&rfr_iscdi=true |