Loading…

Vibration and stability analyses of functionally graded beams

Design considerations, material properties and dynamic properties of engineering applications, rotating components, turbine blades, helicopter blades, etc., have significant effects on system efficiency. Structures made of functionally graded materials have recently begun to take place in such engin...

Full description

Saved in:
Bibliographic Details
Published in:Archive of Mechanical Engineering 2021-01, Vol.68 (1), p.93-113
Main Authors: Kılıç, Burak, Özdemir, Özge
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Design considerations, material properties and dynamic properties of engineering applications, rotating components, turbine blades, helicopter blades, etc., have significant effects on system efficiency. Structures made of functionally graded materials have recently begun to take place in such engineering applications, resulting from the development of composite material technology. In this study, vibration and buckling characteristics of axially functionally graded beams whose material properties change along the beam length is analyzed. Beam structural formulations and functionally graded material formulations are obtained for the Classical and the First Order Shear Deformation Theories. Finite element models are derived to carry out the vibratory and stability characteristic analyses. Effects of several parameters, i.e., rotational speed, hub radius, material properties, power law index parameter and boundary conditions are investigated and are displayed in several figures and tables. The calculated results are compared with the ones in open literature and very good agreement is observed.
ISSN:0004-0738
2300-1895
DOI:10.24425/ame.2021.137043