Loading…

Variable-Stiffness Control of a Dual-Segment Soft Robot Using Depth Vision

A soft-bodied robot exhibits prominent dexterity due to the soft nature of its material. However, the softness can become a burden when the robot needs to interact with the environment, given that the targeted object is usually much stiffer than the compliant soft robot. A variable-stiffness soft ro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2022-04, Vol.27 (2), p.1034-1045
Main Authors: Lai, Jiewen, Lu, Bo, K. Chu, Henry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-8560e81ab3399bdd2428a40aee9aaf9f008e7ff659ae20ffef26dd4bb6aeb09c3
cites cdi_FETCH-LOGICAL-c339t-8560e81ab3399bdd2428a40aee9aaf9f008e7ff659ae20ffef26dd4bb6aeb09c3
container_end_page 1045
container_issue 2
container_start_page 1034
container_title IEEE/ASME transactions on mechatronics
container_volume 27
creator Lai, Jiewen
Lu, Bo
K. Chu, Henry
description A soft-bodied robot exhibits prominent dexterity due to the soft nature of its material. However, the softness can become a burden when the robot needs to interact with the environment, given that the targeted object is usually much stiffer than the compliant soft robot. A variable-stiffness soft robot, fusing the merits of softness and stiffness, is in favor of many applications, such as robot-assisted minimally invasive surgeries. In this article, we propose a tendon-tensioning method to adaptively control the stiffness of a dual-segment tendon-driven backboneless soft robot based on depth vision. A depth-vision-based closed-loop controller is designed for stiffness compensation when the manipulator is subjected to the external load. Experiments were conducted to examine the feasibility and performance of the proposed method. The results confirm our control scheme on the robot with controllability of stiffness up to 132%. Based on our method, the manipulator with an external payload can follow designated trajectories with positioning errors reduced up to 50% comparing to that with open-loop control. Without quantifying the instantaneous stiffness, this work contributes a generalized method for tuning the stiffness of the tendon-driven soft robots in the presence of external disturbances without onboard sensing.
doi_str_mv 10.1109/TMECH.2021.3078466
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650297117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9427246</ieee_id><sourcerecordid>2650297117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8560e81ab3399bdd2428a40aee9aaf9f008e7ff659ae20ffef26dd4bb6aeb09c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1sn2Wx2c5S2WqUi2A-8hWx3UrdsNzVJD_57t7Z4mnfgfWbgIeSWwYAxUA_zt_FwMuDA2SCFvBBSnpEeU4IlwMTneZehSBMh0uySXIWwAQDBgPXI69L42pQNJrNYW9tiCHTo2uhdQ52lho72pklmuN5iG-nM2Ug_XOkiXYS6XdMR7uIXXdahdu01ubCmCXhzmn2yeBrPh5Nk-v78MnycJqs0VTEpMglYMFN2myqrigteGAEGURljlQUoMLdWZsogB2vRcllVoiylwRLUKu2T--PdnXffewxRb9zet91LzWUGXOWM5V2LH1sr70LwaPXO11vjfzQDfXCm_5zpgzN9ctZBd0eoRsR_QAmecyHTX_Y_aEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650297117</pqid></control><display><type>article</type><title>Variable-Stiffness Control of a Dual-Segment Soft Robot Using Depth Vision</title><source>IEEE Xplore (Online service)</source><creator>Lai, Jiewen ; Lu, Bo ; K. Chu, Henry</creator><creatorcontrib>Lai, Jiewen ; Lu, Bo ; K. Chu, Henry</creatorcontrib><description>A soft-bodied robot exhibits prominent dexterity due to the soft nature of its material. However, the softness can become a burden when the robot needs to interact with the environment, given that the targeted object is usually much stiffer than the compliant soft robot. A variable-stiffness soft robot, fusing the merits of softness and stiffness, is in favor of many applications, such as robot-assisted minimally invasive surgeries. In this article, we propose a tendon-tensioning method to adaptively control the stiffness of a dual-segment tendon-driven backboneless soft robot based on depth vision. A depth-vision-based closed-loop controller is designed for stiffness compensation when the manipulator is subjected to the external load. Experiments were conducted to examine the feasibility and performance of the proposed method. The results confirm our control scheme on the robot with controllability of stiffness up to 132%. Based on our method, the manipulator with an external payload can follow designated trajectories with positioning errors reduced up to 50% comparing to that with open-loop control. Without quantifying the instantaneous stiffness, this work contributes a generalized method for tuning the stiffness of the tendon-driven soft robots in the presence of external disturbances without onboard sensing.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2021.3078466</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems design ; End effectors ; Jamming ; Manipulators ; RGB-D perception ; Robot control ; Robot kinematics ; Robotic surgery ; Robots ; Segments ; soft robot ; soft robot materials and design ; Soft robotics ; Softness ; Stiffness ; tendon/wire mechanism ; Tendons ; Tensioning ; Tuning ; visual servoing</subject><ispartof>IEEE/ASME transactions on mechatronics, 2022-04, Vol.27 (2), p.1034-1045</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8560e81ab3399bdd2428a40aee9aaf9f008e7ff659ae20ffef26dd4bb6aeb09c3</citedby><cites>FETCH-LOGICAL-c339t-8560e81ab3399bdd2428a40aee9aaf9f008e7ff659ae20ffef26dd4bb6aeb09c3</cites><orcidid>0000-0002-2676-7387 ; 0000-0001-7225-6927 ; 0000-0002-2858-1121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9427246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lai, Jiewen</creatorcontrib><creatorcontrib>Lu, Bo</creatorcontrib><creatorcontrib>K. Chu, Henry</creatorcontrib><title>Variable-Stiffness Control of a Dual-Segment Soft Robot Using Depth Vision</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>A soft-bodied robot exhibits prominent dexterity due to the soft nature of its material. However, the softness can become a burden when the robot needs to interact with the environment, given that the targeted object is usually much stiffer than the compliant soft robot. A variable-stiffness soft robot, fusing the merits of softness and stiffness, is in favor of many applications, such as robot-assisted minimally invasive surgeries. In this article, we propose a tendon-tensioning method to adaptively control the stiffness of a dual-segment tendon-driven backboneless soft robot based on depth vision. A depth-vision-based closed-loop controller is designed for stiffness compensation when the manipulator is subjected to the external load. Experiments were conducted to examine the feasibility and performance of the proposed method. The results confirm our control scheme on the robot with controllability of stiffness up to 132%. Based on our method, the manipulator with an external payload can follow designated trajectories with positioning errors reduced up to 50% comparing to that with open-loop control. Without quantifying the instantaneous stiffness, this work contributes a generalized method for tuning the stiffness of the tendon-driven soft robots in the presence of external disturbances without onboard sensing.</description><subject>Control systems design</subject><subject>End effectors</subject><subject>Jamming</subject><subject>Manipulators</subject><subject>RGB-D perception</subject><subject>Robot control</subject><subject>Robot kinematics</subject><subject>Robotic surgery</subject><subject>Robots</subject><subject>Segments</subject><subject>soft robot</subject><subject>soft robot materials and design</subject><subject>Soft robotics</subject><subject>Softness</subject><subject>Stiffness</subject><subject>tendon/wire mechanism</subject><subject>Tendons</subject><subject>Tensioning</subject><subject>Tuning</subject><subject>visual servoing</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1sn2Wx2c5S2WqUi2A-8hWx3UrdsNzVJD_57t7Z4mnfgfWbgIeSWwYAxUA_zt_FwMuDA2SCFvBBSnpEeU4IlwMTneZehSBMh0uySXIWwAQDBgPXI69L42pQNJrNYW9tiCHTo2uhdQ52lho72pklmuN5iG-nM2Ug_XOkiXYS6XdMR7uIXXdahdu01ubCmCXhzmn2yeBrPh5Nk-v78MnycJqs0VTEpMglYMFN2myqrigteGAEGURljlQUoMLdWZsogB2vRcllVoiylwRLUKu2T--PdnXffewxRb9zet91LzWUGXOWM5V2LH1sr70LwaPXO11vjfzQDfXCm_5zpgzN9ctZBd0eoRsR_QAmecyHTX_Y_aEs</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Lai, Jiewen</creator><creator>Lu, Bo</creator><creator>K. Chu, Henry</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2676-7387</orcidid><orcidid>https://orcid.org/0000-0001-7225-6927</orcidid><orcidid>https://orcid.org/0000-0002-2858-1121</orcidid></search><sort><creationdate>20220401</creationdate><title>Variable-Stiffness Control of a Dual-Segment Soft Robot Using Depth Vision</title><author>Lai, Jiewen ; Lu, Bo ; K. Chu, Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8560e81ab3399bdd2428a40aee9aaf9f008e7ff659ae20ffef26dd4bb6aeb09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control systems design</topic><topic>End effectors</topic><topic>Jamming</topic><topic>Manipulators</topic><topic>RGB-D perception</topic><topic>Robot control</topic><topic>Robot kinematics</topic><topic>Robotic surgery</topic><topic>Robots</topic><topic>Segments</topic><topic>soft robot</topic><topic>soft robot materials and design</topic><topic>Soft robotics</topic><topic>Softness</topic><topic>Stiffness</topic><topic>tendon/wire mechanism</topic><topic>Tendons</topic><topic>Tensioning</topic><topic>Tuning</topic><topic>visual servoing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Jiewen</creatorcontrib><creatorcontrib>Lu, Bo</creatorcontrib><creatorcontrib>K. Chu, Henry</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Jiewen</au><au>Lu, Bo</au><au>K. Chu, Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable-Stiffness Control of a Dual-Segment Soft Robot Using Depth Vision</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>27</volume><issue>2</issue><spage>1034</spage><epage>1045</epage><pages>1034-1045</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>A soft-bodied robot exhibits prominent dexterity due to the soft nature of its material. However, the softness can become a burden when the robot needs to interact with the environment, given that the targeted object is usually much stiffer than the compliant soft robot. A variable-stiffness soft robot, fusing the merits of softness and stiffness, is in favor of many applications, such as robot-assisted minimally invasive surgeries. In this article, we propose a tendon-tensioning method to adaptively control the stiffness of a dual-segment tendon-driven backboneless soft robot based on depth vision. A depth-vision-based closed-loop controller is designed for stiffness compensation when the manipulator is subjected to the external load. Experiments were conducted to examine the feasibility and performance of the proposed method. The results confirm our control scheme on the robot with controllability of stiffness up to 132%. Based on our method, the manipulator with an external payload can follow designated trajectories with positioning errors reduced up to 50% comparing to that with open-loop control. Without quantifying the instantaneous stiffness, this work contributes a generalized method for tuning the stiffness of the tendon-driven soft robots in the presence of external disturbances without onboard sensing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2021.3078466</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2676-7387</orcidid><orcidid>https://orcid.org/0000-0001-7225-6927</orcidid><orcidid>https://orcid.org/0000-0002-2858-1121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2022-04, Vol.27 (2), p.1034-1045
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_2650297117
source IEEE Xplore (Online service)
subjects Control systems design
End effectors
Jamming
Manipulators
RGB-D perception
Robot control
Robot kinematics
Robotic surgery
Robots
Segments
soft robot
soft robot materials and design
Soft robotics
Softness
Stiffness
tendon/wire mechanism
Tendons
Tensioning
Tuning
visual servoing
title Variable-Stiffness Control of a Dual-Segment Soft Robot Using Depth Vision
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable-Stiffness%20Control%20of%20a%20Dual-Segment%20Soft%20Robot%20Using%20Depth%20Vision&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Lai,%20Jiewen&rft.date=2022-04-01&rft.volume=27&rft.issue=2&rft.spage=1034&rft.epage=1045&rft.pages=1034-1045&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2021.3078466&rft_dat=%3Cproquest_cross%3E2650297117%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-8560e81ab3399bdd2428a40aee9aaf9f008e7ff659ae20ffef26dd4bb6aeb09c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650297117&rft_id=info:pmid/&rft_ieee_id=9427246&rfr_iscdi=true