Loading…
A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection
This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable m...
Saved in:
Published in: | IEEE sensors journal 2022-04, Vol.22 (8), p.7868-7876 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93 |
container_end_page | 7876 |
container_issue | 8 |
container_start_page | 7868 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Mascret, Q. Gagnon-Turcotte, G. Bielmann, M. Fall, C. L. Bouyer, L. J. Gosselin, B. |
description | This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable motion sensor nodes in parallel. The sensors communicate the measured inertial data to a Raspberry Pi 3 running a pre-trained classifier, which performs motion detection and classification in real-time. Our approach based on raw data and machine learning provides more efficiency and simplicity by decreasing the computation cost and the latency. Our detection and classification algorithm utilizes a new custom preconditioning method called Multi-Mapping Spherical Normalization (MMSN) , in combination with a Support Vector Machine with Radial Basis Function Kernel (RBF-SVM). This new preconditioning algorithm allows to sparse the raw inertial data to increase successful classification results without adding any computational burden. The presented approach achieves a motion classification accuracy of 98.28% for 12 body motions, while allowing for real-time prediction with low latency output (< 20 ms which is 50% less than some studies) for preconditioning and processing thanks to the new MMSN preconditioning method and the use of raw data. We tested our approach with 10 able-bodied subjects. |
doi_str_mv | 10.1109/JSEN.2021.3139588 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650298172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9665717</ieee_id><sourcerecordid>2650298172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhejiYj-AONNE6-H_VjX9pIgfgXQCAbvlq49k-FYsR1R_r1bMF6dc5LnfXPyRNElwQNCsLp5mo9nA4opGTDCFJfyKOoRzmVMRCKPu53hOGHi_TQ6C2GNMVGCi17UDNEStNd5BWgOdXAezaD5dv4TLctmhcabHKwFi6barMoa0KSl67L-QEWLvoKu4kW5ATR1TelqNKx1tQ9lQLq2aOQ22wp-0IsLzc4DuoUGTIedRyeFrgJc_M1-9HY3Xowe4snz_eNoOIkNVaxp3zU0pyRVwmCqDEl5e2ma51ZikWJuBbDcMkghl4YyyXKhLAZsk0QWtFCsH10ferfefe0gNNna7Xz7YshoyttOSQRtKXKgjHcheCiyrS832u8zgrNObtbJzTq52Z_cNnN1yJQA8M-rNOWCCPYLklV1zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650298172</pqid></control><display><type>article</type><title>A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mascret, Q. ; Gagnon-Turcotte, G. ; Bielmann, M. ; Fall, C. L. ; Bouyer, L. J. ; Gosselin, B.</creator><creatorcontrib>Mascret, Q. ; Gagnon-Turcotte, G. ; Bielmann, M. ; Fall, C. L. ; Bouyer, L. J. ; Gosselin, B.</creatorcontrib><description>This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable motion sensor nodes in parallel. The sensors communicate the measured inertial data to a Raspberry Pi 3 running a pre-trained classifier, which performs motion detection and classification in real-time. Our approach based on raw data and machine learning provides more efficiency and simplicity by decreasing the computation cost and the latency. Our detection and classification algorithm utilizes a new custom preconditioning method called Multi-Mapping Spherical Normalization (MMSN) , in combination with a Support Vector Machine with Radial Basis Function Kernel (RBF-SVM). This new preconditioning algorithm allows to sparse the raw inertial data to increase successful classification results without adding any computational burden. The presented approach achieves a motion classification accuracy of 98.28% for 12 body motions, while allowing for real-time prediction with low latency output (< 20 ms which is 50% less than some studies) for preconditioning and processing thanks to the new MMSN preconditioning method and the use of raw data. We tested our approach with 10 able-bodied subjects.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3139588</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Algorithms ; Classification ; Embedded systems ; Human activity recognition ; Kernel functions ; Machine learning ; Motion perception ; Motion sensors ; Network latency ; Preconditioning ; Radial basis function ; Real time ; Real-time systems ; sensor fusion ; Sensor phenomena and characterization ; sensor systems and applications ; Sensors ; signal processing algorithms ; supervised learning ; Support vector machines ; Wearable sensors ; Wearable technology ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2022-04, Vol.22 (8), p.7868-7876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93</citedby><cites>FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93</cites><orcidid>0000-0003-1473-3451 ; 0000-0002-4336-2664 ; 0000-0002-6717-2910 ; 0000-0002-6177-9068 ; 0000-0003-2034-4516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9665717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mascret, Q.</creatorcontrib><creatorcontrib>Gagnon-Turcotte, G.</creatorcontrib><creatorcontrib>Bielmann, M.</creatorcontrib><creatorcontrib>Fall, C. L.</creatorcontrib><creatorcontrib>Bouyer, L. J.</creatorcontrib><creatorcontrib>Gosselin, B.</creatorcontrib><title>A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable motion sensor nodes in parallel. The sensors communicate the measured inertial data to a Raspberry Pi 3 running a pre-trained classifier, which performs motion detection and classification in real-time. Our approach based on raw data and machine learning provides more efficiency and simplicity by decreasing the computation cost and the latency. Our detection and classification algorithm utilizes a new custom preconditioning method called Multi-Mapping Spherical Normalization (MMSN) , in combination with a Support Vector Machine with Radial Basis Function Kernel (RBF-SVM). This new preconditioning algorithm allows to sparse the raw inertial data to increase successful classification results without adding any computational burden. The presented approach achieves a motion classification accuracy of 98.28% for 12 body motions, while allowing for real-time prediction with low latency output (< 20 ms which is 50% less than some studies) for preconditioning and processing thanks to the new MMSN preconditioning method and the use of raw data. We tested our approach with 10 able-bodied subjects.</description><subject>Activity recognition</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Embedded systems</subject><subject>Human activity recognition</subject><subject>Kernel functions</subject><subject>Machine learning</subject><subject>Motion perception</subject><subject>Motion sensors</subject><subject>Network latency</subject><subject>Preconditioning</subject><subject>Radial basis function</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>sensor systems and applications</subject><subject>Sensors</subject><subject>signal processing algorithms</subject><subject>supervised learning</subject><subject>Support vector machines</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhejiYj-AONNE6-H_VjX9pIgfgXQCAbvlq49k-FYsR1R_r1bMF6dc5LnfXPyRNElwQNCsLp5mo9nA4opGTDCFJfyKOoRzmVMRCKPu53hOGHi_TQ6C2GNMVGCi17UDNEStNd5BWgOdXAezaD5dv4TLctmhcabHKwFi6barMoa0KSl67L-QEWLvoKu4kW5ATR1TelqNKx1tQ9lQLq2aOQ22wp-0IsLzc4DuoUGTIedRyeFrgJc_M1-9HY3Xowe4snz_eNoOIkNVaxp3zU0pyRVwmCqDEl5e2ma51ZikWJuBbDcMkghl4YyyXKhLAZsk0QWtFCsH10ferfefe0gNNna7Xz7YshoyttOSQRtKXKgjHcheCiyrS832u8zgrNObtbJzTq52Z_cNnN1yJQA8M-rNOWCCPYLklV1zA</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Mascret, Q.</creator><creator>Gagnon-Turcotte, G.</creator><creator>Bielmann, M.</creator><creator>Fall, C. L.</creator><creator>Bouyer, L. J.</creator><creator>Gosselin, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1473-3451</orcidid><orcidid>https://orcid.org/0000-0002-4336-2664</orcidid><orcidid>https://orcid.org/0000-0002-6717-2910</orcidid><orcidid>https://orcid.org/0000-0002-6177-9068</orcidid><orcidid>https://orcid.org/0000-0003-2034-4516</orcidid></search><sort><creationdate>20220415</creationdate><title>A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection</title><author>Mascret, Q. ; Gagnon-Turcotte, G. ; Bielmann, M. ; Fall, C. L. ; Bouyer, L. J. ; Gosselin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity recognition</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Embedded systems</topic><topic>Human activity recognition</topic><topic>Kernel functions</topic><topic>Machine learning</topic><topic>Motion perception</topic><topic>Motion sensors</topic><topic>Network latency</topic><topic>Preconditioning</topic><topic>Radial basis function</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>sensor systems and applications</topic><topic>Sensors</topic><topic>signal processing algorithms</topic><topic>supervised learning</topic><topic>Support vector machines</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mascret, Q.</creatorcontrib><creatorcontrib>Gagnon-Turcotte, G.</creatorcontrib><creatorcontrib>Bielmann, M.</creatorcontrib><creatorcontrib>Fall, C. L.</creatorcontrib><creatorcontrib>Bouyer, L. J.</creatorcontrib><creatorcontrib>Gosselin, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mascret, Q.</au><au>Gagnon-Turcotte, G.</au><au>Bielmann, M.</au><au>Fall, C. L.</au><au>Bouyer, L. J.</au><au>Gosselin, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-04-15</date><risdate>2022</risdate><volume>22</volume><issue>8</issue><spage>7868</spage><epage>7876</epage><pages>7868-7876</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable motion sensor nodes in parallel. The sensors communicate the measured inertial data to a Raspberry Pi 3 running a pre-trained classifier, which performs motion detection and classification in real-time. Our approach based on raw data and machine learning provides more efficiency and simplicity by decreasing the computation cost and the latency. Our detection and classification algorithm utilizes a new custom preconditioning method called Multi-Mapping Spherical Normalization (MMSN) , in combination with a Support Vector Machine with Radial Basis Function Kernel (RBF-SVM). This new preconditioning algorithm allows to sparse the raw inertial data to increase successful classification results without adding any computational burden. The presented approach achieves a motion classification accuracy of 98.28% for 12 body motions, while allowing for real-time prediction with low latency output (< 20 ms which is 50% less than some studies) for preconditioning and processing thanks to the new MMSN preconditioning method and the use of raw data. We tested our approach with 10 able-bodied subjects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3139588</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1473-3451</orcidid><orcidid>https://orcid.org/0000-0002-4336-2664</orcidid><orcidid>https://orcid.org/0000-0002-6717-2910</orcidid><orcidid>https://orcid.org/0000-0002-6177-9068</orcidid><orcidid>https://orcid.org/0000-0003-2034-4516</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-04, Vol.22 (8), p.7868-7876 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2650298172 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Activity recognition Algorithms Classification Embedded systems Human activity recognition Kernel functions Machine learning Motion perception Motion sensors Network latency Preconditioning Radial basis function Real time Real-time systems sensor fusion Sensor phenomena and characterization sensor systems and applications Sensors signal processing algorithms supervised learning Support vector machines Wearable sensors Wearable technology Wireless communication Wireless sensor networks |
title | A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wearable%20Sensor%20Network%20With%20Embedded%20Machine%20Learning%20for%20Real-Time%20Motion%20Analysis%20and%20Complex%20Posture%20Detection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Mascret,%20Q.&rft.date=2022-04-15&rft.volume=22&rft.issue=8&rft.spage=7868&rft.epage=7876&rft.pages=7868-7876&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3139588&rft_dat=%3Cproquest_cross%3E2650298172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650298172&rft_id=info:pmid/&rft_ieee_id=9665717&rfr_iscdi=true |