Loading…

A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection

This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2022-04, Vol.22 (8), p.7868-7876
Main Authors: Mascret, Q., Gagnon-Turcotte, G., Bielmann, M., Fall, C. L., Bouyer, L. J., Gosselin, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93
cites cdi_FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93
container_end_page 7876
container_issue 8
container_start_page 7868
container_title IEEE sensors journal
container_volume 22
creator Mascret, Q.
Gagnon-Turcotte, G.
Bielmann, M.
Fall, C. L.
Bouyer, L. J.
Gosselin, B.
description This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable motion sensor nodes in parallel. The sensors communicate the measured inertial data to a Raspberry Pi 3 running a pre-trained classifier, which performs motion detection and classification in real-time. Our approach based on raw data and machine learning provides more efficiency and simplicity by decreasing the computation cost and the latency. Our detection and classification algorithm utilizes a new custom preconditioning method called Multi-Mapping Spherical Normalization (MMSN) , in combination with a Support Vector Machine with Radial Basis Function Kernel (RBF-SVM). This new preconditioning algorithm allows to sparse the raw inertial data to increase successful classification results without adding any computational burden. The presented approach achieves a motion classification accuracy of 98.28% for 12 body motions, while allowing for real-time prediction with low latency output (< 20 ms which is 50% less than some studies) for preconditioning and processing thanks to the new MMSN preconditioning method and the use of raw data. We tested our approach with 10 able-bodied subjects.
doi_str_mv 10.1109/JSEN.2021.3139588
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650298172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9665717</ieee_id><sourcerecordid>2650298172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhejiYj-AONNE6-H_VjX9pIgfgXQCAbvlq49k-FYsR1R_r1bMF6dc5LnfXPyRNElwQNCsLp5mo9nA4opGTDCFJfyKOoRzmVMRCKPu53hOGHi_TQ6C2GNMVGCi17UDNEStNd5BWgOdXAezaD5dv4TLctmhcabHKwFi6barMoa0KSl67L-QEWLvoKu4kW5ATR1TelqNKx1tQ9lQLq2aOQ22wp-0IsLzc4DuoUGTIedRyeFrgJc_M1-9HY3Xowe4snz_eNoOIkNVaxp3zU0pyRVwmCqDEl5e2ma51ZikWJuBbDcMkghl4YyyXKhLAZsk0QWtFCsH10ferfefe0gNNna7Xz7YshoyttOSQRtKXKgjHcheCiyrS832u8zgrNObtbJzTq52Z_cNnN1yJQA8M-rNOWCCPYLklV1zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650298172</pqid></control><display><type>article</type><title>A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mascret, Q. ; Gagnon-Turcotte, G. ; Bielmann, M. ; Fall, C. L. ; Bouyer, L. J. ; Gosselin, B.</creator><creatorcontrib>Mascret, Q. ; Gagnon-Turcotte, G. ; Bielmann, M. ; Fall, C. L. ; Bouyer, L. J. ; Gosselin, B.</creatorcontrib><description>This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable motion sensor nodes in parallel. The sensors communicate the measured inertial data to a Raspberry Pi 3 running a pre-trained classifier, which performs motion detection and classification in real-time. Our approach based on raw data and machine learning provides more efficiency and simplicity by decreasing the computation cost and the latency. Our detection and classification algorithm utilizes a new custom preconditioning method called Multi-Mapping Spherical Normalization (MMSN) , in combination with a Support Vector Machine with Radial Basis Function Kernel (RBF-SVM). This new preconditioning algorithm allows to sparse the raw inertial data to increase successful classification results without adding any computational burden. The presented approach achieves a motion classification accuracy of 98.28% for 12 body motions, while allowing for real-time prediction with low latency output (&lt; 20 ms which is 50% less than some studies) for preconditioning and processing thanks to the new MMSN preconditioning method and the use of raw data. We tested our approach with 10 able-bodied subjects.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3139588</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Algorithms ; Classification ; Embedded systems ; Human activity recognition ; Kernel functions ; Machine learning ; Motion perception ; Motion sensors ; Network latency ; Preconditioning ; Radial basis function ; Real time ; Real-time systems ; sensor fusion ; Sensor phenomena and characterization ; sensor systems and applications ; Sensors ; signal processing algorithms ; supervised learning ; Support vector machines ; Wearable sensors ; Wearable technology ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2022-04, Vol.22 (8), p.7868-7876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93</citedby><cites>FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93</cites><orcidid>0000-0003-1473-3451 ; 0000-0002-4336-2664 ; 0000-0002-6717-2910 ; 0000-0002-6177-9068 ; 0000-0003-2034-4516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9665717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mascret, Q.</creatorcontrib><creatorcontrib>Gagnon-Turcotte, G.</creatorcontrib><creatorcontrib>Bielmann, M.</creatorcontrib><creatorcontrib>Fall, C. L.</creatorcontrib><creatorcontrib>Bouyer, L. J.</creatorcontrib><creatorcontrib>Gosselin, B.</creatorcontrib><title>A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable motion sensor nodes in parallel. The sensors communicate the measured inertial data to a Raspberry Pi 3 running a pre-trained classifier, which performs motion detection and classification in real-time. Our approach based on raw data and machine learning provides more efficiency and simplicity by decreasing the computation cost and the latency. Our detection and classification algorithm utilizes a new custom preconditioning method called Multi-Mapping Spherical Normalization (MMSN) , in combination with a Support Vector Machine with Radial Basis Function Kernel (RBF-SVM). This new preconditioning algorithm allows to sparse the raw inertial data to increase successful classification results without adding any computational burden. The presented approach achieves a motion classification accuracy of 98.28% for 12 body motions, while allowing for real-time prediction with low latency output (&lt; 20 ms which is 50% less than some studies) for preconditioning and processing thanks to the new MMSN preconditioning method and the use of raw data. We tested our approach with 10 able-bodied subjects.</description><subject>Activity recognition</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Embedded systems</subject><subject>Human activity recognition</subject><subject>Kernel functions</subject><subject>Machine learning</subject><subject>Motion perception</subject><subject>Motion sensors</subject><subject>Network latency</subject><subject>Preconditioning</subject><subject>Radial basis function</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>sensor systems and applications</subject><subject>Sensors</subject><subject>signal processing algorithms</subject><subject>supervised learning</subject><subject>Support vector machines</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhejiYj-AONNE6-H_VjX9pIgfgXQCAbvlq49k-FYsR1R_r1bMF6dc5LnfXPyRNElwQNCsLp5mo9nA4opGTDCFJfyKOoRzmVMRCKPu53hOGHi_TQ6C2GNMVGCi17UDNEStNd5BWgOdXAezaD5dv4TLctmhcabHKwFi6barMoa0KSl67L-QEWLvoKu4kW5ATR1TelqNKx1tQ9lQLq2aOQ22wp-0IsLzc4DuoUGTIedRyeFrgJc_M1-9HY3Xowe4snz_eNoOIkNVaxp3zU0pyRVwmCqDEl5e2ma51ZikWJuBbDcMkghl4YyyXKhLAZsk0QWtFCsH10ferfefe0gNNna7Xz7YshoyttOSQRtKXKgjHcheCiyrS832u8zgrNObtbJzTq52Z_cNnN1yJQA8M-rNOWCCPYLklV1zA</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Mascret, Q.</creator><creator>Gagnon-Turcotte, G.</creator><creator>Bielmann, M.</creator><creator>Fall, C. L.</creator><creator>Bouyer, L. J.</creator><creator>Gosselin, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1473-3451</orcidid><orcidid>https://orcid.org/0000-0002-4336-2664</orcidid><orcidid>https://orcid.org/0000-0002-6717-2910</orcidid><orcidid>https://orcid.org/0000-0002-6177-9068</orcidid><orcidid>https://orcid.org/0000-0003-2034-4516</orcidid></search><sort><creationdate>20220415</creationdate><title>A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection</title><author>Mascret, Q. ; Gagnon-Turcotte, G. ; Bielmann, M. ; Fall, C. L. ; Bouyer, L. J. ; Gosselin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity recognition</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Embedded systems</topic><topic>Human activity recognition</topic><topic>Kernel functions</topic><topic>Machine learning</topic><topic>Motion perception</topic><topic>Motion sensors</topic><topic>Network latency</topic><topic>Preconditioning</topic><topic>Radial basis function</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>sensor systems and applications</topic><topic>Sensors</topic><topic>signal processing algorithms</topic><topic>supervised learning</topic><topic>Support vector machines</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mascret, Q.</creatorcontrib><creatorcontrib>Gagnon-Turcotte, G.</creatorcontrib><creatorcontrib>Bielmann, M.</creatorcontrib><creatorcontrib>Fall, C. L.</creatorcontrib><creatorcontrib>Bouyer, L. J.</creatorcontrib><creatorcontrib>Gosselin, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mascret, Q.</au><au>Gagnon-Turcotte, G.</au><au>Bielmann, M.</au><au>Fall, C. L.</au><au>Bouyer, L. J.</au><au>Gosselin, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-04-15</date><risdate>2022</risdate><volume>22</volume><issue>8</issue><spage>7868</spage><epage>7876</epage><pages>7868-7876</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work presents an embedded system driven by a wearable sensor network and machine learning to perform complex posture detection and high-precision human activity recognition (HAR) in real time. The presented prototype performs real-time HAR using raw data collected from three wireless wearable motion sensor nodes in parallel. The sensors communicate the measured inertial data to a Raspberry Pi 3 running a pre-trained classifier, which performs motion detection and classification in real-time. Our approach based on raw data and machine learning provides more efficiency and simplicity by decreasing the computation cost and the latency. Our detection and classification algorithm utilizes a new custom preconditioning method called Multi-Mapping Spherical Normalization (MMSN) , in combination with a Support Vector Machine with Radial Basis Function Kernel (RBF-SVM). This new preconditioning algorithm allows to sparse the raw inertial data to increase successful classification results without adding any computational burden. The presented approach achieves a motion classification accuracy of 98.28% for 12 body motions, while allowing for real-time prediction with low latency output (&lt; 20 ms which is 50% less than some studies) for preconditioning and processing thanks to the new MMSN preconditioning method and the use of raw data. We tested our approach with 10 able-bodied subjects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3139588</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1473-3451</orcidid><orcidid>https://orcid.org/0000-0002-4336-2664</orcidid><orcidid>https://orcid.org/0000-0002-6717-2910</orcidid><orcidid>https://orcid.org/0000-0002-6177-9068</orcidid><orcidid>https://orcid.org/0000-0003-2034-4516</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-04, Vol.22 (8), p.7868-7876
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2650298172
source IEEE Electronic Library (IEL) Journals
subjects Activity recognition
Algorithms
Classification
Embedded systems
Human activity recognition
Kernel functions
Machine learning
Motion perception
Motion sensors
Network latency
Preconditioning
Radial basis function
Real time
Real-time systems
sensor fusion
Sensor phenomena and characterization
sensor systems and applications
Sensors
signal processing algorithms
supervised learning
Support vector machines
Wearable sensors
Wearable technology
Wireless communication
Wireless sensor networks
title A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wearable%20Sensor%20Network%20With%20Embedded%20Machine%20Learning%20for%20Real-Time%20Motion%20Analysis%20and%20Complex%20Posture%20Detection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Mascret,%20Q.&rft.date=2022-04-15&rft.volume=22&rft.issue=8&rft.spage=7868&rft.epage=7876&rft.pages=7868-7876&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3139588&rft_dat=%3Cproquest_cross%3E2650298172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-43c2b21697c029c165b21a2bbd807605d7e3bd3e6eb8c2383b79d0e0d448f2f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650298172&rft_id=info:pmid/&rft_ieee_id=9665717&rfr_iscdi=true