Loading…

Coverless Video Steganography Based on Audio and Frame Features

The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, whi...

Full description

Saved in:
Bibliographic Details
Published in:Security and communication networks 2022-04, Vol.2022, p.1-14
Main Authors: Zhang, Chunhu, Tan, Yun, Qin, Jiaohua, Xiang, Xuyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63
cites cdi_FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63
container_end_page 14
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2022
creator Zhang, Chunhu
Tan, Yun
Qin, Jiaohua
Xiang, Xuyu
description The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. Then, we build a retrieval database according to the relationship between the generated bit sequences and three features of the corresponding videos. The sender divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver. The receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. The experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and stronger robustness compared with the existing coverless steganography schemes based on the video.
doi_str_mv 10.1155/2022/1154098
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651412787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651412787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKs7HyDgUkfzpZmZZCW1WBUKLvzZhm_y005pJzWZUfr2Tmlx6erexeFeOIRcArsFyPM7zji_65tgSh6RAaiRyhhwfvzXQZySs5SWjBUgSjEg95Pw7eLKpUQ_a-sCfWvdHJswj7hZbOkDJmdpaOi4s3Wg2Fg6jbh2dOqw7aJL5-TE4yq5i0MOycf08X3ynM1en14m41lmeFG2WTVCYytmFFMVYxUKmQNI5CwvpVDK2FxaITwylMYr67kpPFa89BbAV74YDcnVfncTw1fnUquXoYtNf6l5kYMAXsqyp272lIkhpei83sR6jXGrgemdIr1TpA-Kevx6jy_qxuJP_T_9C1pzZN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651412787</pqid></control><display><type>article</type><title>Coverless Video Steganography Based on Audio and Frame Features</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Zhang, Chunhu ; Tan, Yun ; Qin, Jiaohua ; Xiang, Xuyu</creator><contributor>Chen, Beijing ; Beijing Chen</contributor><creatorcontrib>Zhang, Chunhu ; Tan, Yun ; Qin, Jiaohua ; Xiang, Xuyu ; Chen, Beijing ; Beijing Chen</creatorcontrib><description>The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. Then, we build a retrieval database according to the relationship between the generated bit sequences and three features of the corresponding videos. The sender divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver. The receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. The experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and stronger robustness compared with the existing coverless steganography schemes based on the video.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/1154098</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Discrete Wavelet Transform ; Feature extraction ; Information retrieval ; Neural networks ; Receivers &amp; amplifiers ; Signal processing ; Steganography ; Video ; Wavelet transforms</subject><ispartof>Security and communication networks, 2022-04, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Chunhu Zhang et al.</rights><rights>Copyright © 2022 Chunhu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63</citedby><cites>FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63</cites><orcidid>0000-0002-9855-8234 ; 0000-0003-0542-1499 ; 0000-0002-2778-7531 ; 0000-0002-7549-7731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2651412787?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,44577</link.rule.ids></links><search><contributor>Chen, Beijing</contributor><contributor>Beijing Chen</contributor><creatorcontrib>Zhang, Chunhu</creatorcontrib><creatorcontrib>Tan, Yun</creatorcontrib><creatorcontrib>Qin, Jiaohua</creatorcontrib><creatorcontrib>Xiang, Xuyu</creatorcontrib><title>Coverless Video Steganography Based on Audio and Frame Features</title><title>Security and communication networks</title><description>The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. Then, we build a retrieval database according to the relationship between the generated bit sequences and three features of the corresponding videos. The sender divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver. The receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. The experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and stronger robustness compared with the existing coverless steganography schemes based on the video.</description><subject>Algorithms</subject><subject>Discrete Wavelet Transform</subject><subject>Feature extraction</subject><subject>Information retrieval</subject><subject>Neural networks</subject><subject>Receivers &amp; amplifiers</subject><subject>Signal processing</subject><subject>Steganography</subject><subject>Video</subject><subject>Wavelet transforms</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kM1KAzEYRYMoWKs7HyDgUkfzpZmZZCW1WBUKLvzZhm_y005pJzWZUfr2Tmlx6erexeFeOIRcArsFyPM7zji_65tgSh6RAaiRyhhwfvzXQZySs5SWjBUgSjEg95Pw7eLKpUQ_a-sCfWvdHJswj7hZbOkDJmdpaOi4s3Wg2Fg6jbh2dOqw7aJL5-TE4yq5i0MOycf08X3ynM1en14m41lmeFG2WTVCYytmFFMVYxUKmQNI5CwvpVDK2FxaITwylMYr67kpPFa89BbAV74YDcnVfncTw1fnUquXoYtNf6l5kYMAXsqyp272lIkhpei83sR6jXGrgemdIr1TpA-Kevx6jy_qxuJP_T_9C1pzZN8</recordid><startdate>20220404</startdate><enddate>20220404</enddate><creator>Zhang, Chunhu</creator><creator>Tan, Yun</creator><creator>Qin, Jiaohua</creator><creator>Xiang, Xuyu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9855-8234</orcidid><orcidid>https://orcid.org/0000-0003-0542-1499</orcidid><orcidid>https://orcid.org/0000-0002-2778-7531</orcidid><orcidid>https://orcid.org/0000-0002-7549-7731</orcidid></search><sort><creationdate>20220404</creationdate><title>Coverless Video Steganography Based on Audio and Frame Features</title><author>Zhang, Chunhu ; Tan, Yun ; Qin, Jiaohua ; Xiang, Xuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Discrete Wavelet Transform</topic><topic>Feature extraction</topic><topic>Information retrieval</topic><topic>Neural networks</topic><topic>Receivers &amp; amplifiers</topic><topic>Signal processing</topic><topic>Steganography</topic><topic>Video</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunhu</creatorcontrib><creatorcontrib>Tan, Yun</creatorcontrib><creatorcontrib>Qin, Jiaohua</creatorcontrib><creatorcontrib>Xiang, Xuyu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunhu</au><au>Tan, Yun</au><au>Qin, Jiaohua</au><au>Xiang, Xuyu</au><au>Chen, Beijing</au><au>Beijing Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coverless Video Steganography Based on Audio and Frame Features</atitle><jtitle>Security and communication networks</jtitle><date>2022-04-04</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. Then, we build a retrieval database according to the relationship between the generated bit sequences and three features of the corresponding videos. The sender divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver. The receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. The experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and stronger robustness compared with the existing coverless steganography schemes based on the video.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/1154098</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9855-8234</orcidid><orcidid>https://orcid.org/0000-0003-0542-1499</orcidid><orcidid>https://orcid.org/0000-0002-2778-7531</orcidid><orcidid>https://orcid.org/0000-0002-7549-7731</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2022-04, Vol.2022, p.1-14
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2651412787
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Algorithms
Discrete Wavelet Transform
Feature extraction
Information retrieval
Neural networks
Receivers & amplifiers
Signal processing
Steganography
Video
Wavelet transforms
title Coverless Video Steganography Based on Audio and Frame Features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coverless%20Video%20Steganography%20Based%20on%20Audio%20and%20Frame%20Features&rft.jtitle=Security%20and%20communication%20networks&rft.au=Zhang,%20Chunhu&rft.date=2022-04-04&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/1154098&rft_dat=%3Cproquest_cross%3E2651412787%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2651412787&rft_id=info:pmid/&rfr_iscdi=true