Loading…
Coverless Video Steganography Based on Audio and Frame Features
The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, whi...
Saved in:
Published in: | Security and communication networks 2022-04, Vol.2022, p.1-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63 |
---|---|
cites | cdi_FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63 |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2022 |
creator | Zhang, Chunhu Tan, Yun Qin, Jiaohua Xiang, Xuyu |
description | The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. Then, we build a retrieval database according to the relationship between the generated bit sequences and three features of the corresponding videos. The sender divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver. The receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. The experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and stronger robustness compared with the existing coverless steganography schemes based on the video. |
doi_str_mv | 10.1155/2022/1154098 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651412787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651412787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKs7HyDgUkfzpZmZZCW1WBUKLvzZhm_y005pJzWZUfr2Tmlx6erexeFeOIRcArsFyPM7zji_65tgSh6RAaiRyhhwfvzXQZySs5SWjBUgSjEg95Pw7eLKpUQ_a-sCfWvdHJswj7hZbOkDJmdpaOi4s3Wg2Fg6jbh2dOqw7aJL5-TE4yq5i0MOycf08X3ynM1en14m41lmeFG2WTVCYytmFFMVYxUKmQNI5CwvpVDK2FxaITwylMYr67kpPFa89BbAV74YDcnVfncTw1fnUquXoYtNf6l5kYMAXsqyp272lIkhpei83sR6jXGrgemdIr1TpA-Kevx6jy_qxuJP_T_9C1pzZN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651412787</pqid></control><display><type>article</type><title>Coverless Video Steganography Based on Audio and Frame Features</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Zhang, Chunhu ; Tan, Yun ; Qin, Jiaohua ; Xiang, Xuyu</creator><contributor>Chen, Beijing ; Beijing Chen</contributor><creatorcontrib>Zhang, Chunhu ; Tan, Yun ; Qin, Jiaohua ; Xiang, Xuyu ; Chen, Beijing ; Beijing Chen</creatorcontrib><description>The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. Then, we build a retrieval database according to the relationship between the generated bit sequences and three features of the corresponding videos. The sender divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver. The receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. The experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and stronger robustness compared with the existing coverless steganography schemes based on the video.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/1154098</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Discrete Wavelet Transform ; Feature extraction ; Information retrieval ; Neural networks ; Receivers & amplifiers ; Signal processing ; Steganography ; Video ; Wavelet transforms</subject><ispartof>Security and communication networks, 2022-04, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Chunhu Zhang et al.</rights><rights>Copyright © 2022 Chunhu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63</citedby><cites>FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63</cites><orcidid>0000-0002-9855-8234 ; 0000-0003-0542-1499 ; 0000-0002-2778-7531 ; 0000-0002-7549-7731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2651412787?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,44577</link.rule.ids></links><search><contributor>Chen, Beijing</contributor><contributor>Beijing Chen</contributor><creatorcontrib>Zhang, Chunhu</creatorcontrib><creatorcontrib>Tan, Yun</creatorcontrib><creatorcontrib>Qin, Jiaohua</creatorcontrib><creatorcontrib>Xiang, Xuyu</creatorcontrib><title>Coverless Video Steganography Based on Audio and Frame Features</title><title>Security and communication networks</title><description>The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. Then, we build a retrieval database according to the relationship between the generated bit sequences and three features of the corresponding videos. The sender divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver. The receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. The experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and stronger robustness compared with the existing coverless steganography schemes based on the video.</description><subject>Algorithms</subject><subject>Discrete Wavelet Transform</subject><subject>Feature extraction</subject><subject>Information retrieval</subject><subject>Neural networks</subject><subject>Receivers & amplifiers</subject><subject>Signal processing</subject><subject>Steganography</subject><subject>Video</subject><subject>Wavelet transforms</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kM1KAzEYRYMoWKs7HyDgUkfzpZmZZCW1WBUKLvzZhm_y005pJzWZUfr2Tmlx6erexeFeOIRcArsFyPM7zji_65tgSh6RAaiRyhhwfvzXQZySs5SWjBUgSjEg95Pw7eLKpUQ_a-sCfWvdHJswj7hZbOkDJmdpaOi4s3Wg2Fg6jbh2dOqw7aJL5-TE4yq5i0MOycf08X3ynM1en14m41lmeFG2WTVCYytmFFMVYxUKmQNI5CwvpVDK2FxaITwylMYr67kpPFa89BbAV74YDcnVfncTw1fnUquXoYtNf6l5kYMAXsqyp272lIkhpei83sR6jXGrgemdIr1TpA-Kevx6jy_qxuJP_T_9C1pzZN8</recordid><startdate>20220404</startdate><enddate>20220404</enddate><creator>Zhang, Chunhu</creator><creator>Tan, Yun</creator><creator>Qin, Jiaohua</creator><creator>Xiang, Xuyu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9855-8234</orcidid><orcidid>https://orcid.org/0000-0003-0542-1499</orcidid><orcidid>https://orcid.org/0000-0002-2778-7531</orcidid><orcidid>https://orcid.org/0000-0002-7549-7731</orcidid></search><sort><creationdate>20220404</creationdate><title>Coverless Video Steganography Based on Audio and Frame Features</title><author>Zhang, Chunhu ; Tan, Yun ; Qin, Jiaohua ; Xiang, Xuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Discrete Wavelet Transform</topic><topic>Feature extraction</topic><topic>Information retrieval</topic><topic>Neural networks</topic><topic>Receivers & amplifiers</topic><topic>Signal processing</topic><topic>Steganography</topic><topic>Video</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunhu</creatorcontrib><creatorcontrib>Tan, Yun</creatorcontrib><creatorcontrib>Qin, Jiaohua</creatorcontrib><creatorcontrib>Xiang, Xuyu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunhu</au><au>Tan, Yun</au><au>Qin, Jiaohua</au><au>Xiang, Xuyu</au><au>Chen, Beijing</au><au>Beijing Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coverless Video Steganography Based on Audio and Frame Features</atitle><jtitle>Security and communication networks</jtitle><date>2022-04-04</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>The coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. Then, we build a retrieval database according to the relationship between the generated bit sequences and three features of the corresponding videos. The sender divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver. The receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. The experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and stronger robustness compared with the existing coverless steganography schemes based on the video.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/1154098</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9855-8234</orcidid><orcidid>https://orcid.org/0000-0003-0542-1499</orcidid><orcidid>https://orcid.org/0000-0002-2778-7531</orcidid><orcidid>https://orcid.org/0000-0002-7549-7731</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2022-04, Vol.2022, p.1-14 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2651412787 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Algorithms Discrete Wavelet Transform Feature extraction Information retrieval Neural networks Receivers & amplifiers Signal processing Steganography Video Wavelet transforms |
title | Coverless Video Steganography Based on Audio and Frame Features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coverless%20Video%20Steganography%20Based%20on%20Audio%20and%20Frame%20Features&rft.jtitle=Security%20and%20communication%20networks&rft.au=Zhang,%20Chunhu&rft.date=2022-04-04&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/1154098&rft_dat=%3Cproquest_cross%3E2651412787%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-b3acdb0c909b00ba485118a20578499cd58d44fa0a8cf9df2c6fab27fd11fbf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2651412787&rft_id=info:pmid/&rfr_iscdi=true |