Loading…
Simulation and misalignment analysis of the gain ratio of a polarization Mie Raman lidar
The gain ratio is a critical parameter in a polarization Mie lidar. Calibrating the gain ratio is essential in aerosol classification studies. We developed a ray-tracing-based simulation method to investigate the impact of mounting errors on the gain ratio. In this method, a computational model for...
Saved in:
Published in: | Applied optics (2004) 2022-04, Vol.61 (10), p.2881 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The gain ratio is a critical parameter in a polarization Mie lidar. Calibrating the gain ratio is essential in aerosol classification studies. We developed a ray-tracing-based simulation method to investigate the impact of mounting errors on the gain ratio. In this method, a computational model for each element of the lidar was built, and Zemax was used to simulate the lidar receiver to obtain the optical gain ratio by theoretical calculations. This method can analyze the influence of each element's mounting errors and offer a theoretical foundation for the machining and mounting accuracy of the lidar design. The correctness of the model was verified by applying it to a single-wavelength polarization Mie Raman lidar. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.453852 |