Loading…

Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models

Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. I...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2022-05, Vol.34 (10), p.8155-8172
Main Authors: Revathi, A., Sasikaladevi, N., Arunprasanth, D., Amirtharajan, Rengarajan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3
cites cdi_FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3
container_end_page 8172
container_issue 10
container_start_page 8155
container_title Neural computing & applications
container_volume 34
creator Revathi, A.
Sasikaladevi, N.
Arunprasanth, D.
Amirtharajan, Rengarajan
description Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. In this work, robust respiratory disease classification using breathing sounds ( RRDCBS) is implemented by extracting multiple features from sounds, creating multiple modelling techniques, and experimental identification of diseases using appropriate testing procedures for multi-class and binary classification of respiratory diseases. Decision level fusion of features for Vector quantisation (VQ) modelling technique has provided 100% accuracy for classifying five respiratory diseases and healthy subjects. Decision level fusion of indices on the features has provided 100% accuracy for VQ, support vector machine (SVM), and K-nearest neighbour (KNN) modelling techniques to perform binary classification of the respiratory disease against healthy data sound. Deep recurrent and convolutional neural networks are also evaluated for multiple/binary classification of respiratory diseases.
doi_str_mv 10.1007/s00521-022-06915-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651904453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651904453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8BL3qoTjLp11HXT1gQVj2HtE3WLt22ZtrD_nuzVvDmaQbmed-Bh7FzAdcCIL0hgFiKCKSMIMlFHMEBmwmFGCHE2SGbQa7COVF4zE6INgCgkiyeMbfqipEG7i31tTdD53e8qskasrxsDFHt6tIMddfykep2zQtvzfC536gb24r45Wp1v7h7u-LbsRnqvrHcBWIMhdy0Fd92lW3olB0505A9-51z9vH48L54jpavTy-L22VUosiHSKYKIUVME5uZLEuVtE66SkJSFFklRFXkSVZI41SJqTVKZXGJuYJSosIEC5yzi6m3993XaGnQm270bXipZRKLHJSKMVByokrfEXnrdO_rrfE7LUDvferJpw4-9Y9PDSGEU4gC3K6t_6v-J_UNztB4cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651904453</pqid></control><display><type>article</type><title>Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models</title><source>Springer Link</source><creator>Revathi, A. ; Sasikaladevi, N. ; Arunprasanth, D. ; Amirtharajan, Rengarajan</creator><creatorcontrib>Revathi, A. ; Sasikaladevi, N. ; Arunprasanth, D. ; Amirtharajan, Rengarajan</creatorcontrib><description>Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. In this work, robust respiratory disease classification using breathing sounds ( RRDCBS) is implemented by extracting multiple features from sounds, creating multiple modelling techniques, and experimental identification of diseases using appropriate testing procedures for multi-class and binary classification of respiratory diseases. Decision level fusion of features for Vector quantisation (VQ) modelling technique has provided 100% accuracy for classifying five respiratory diseases and healthy subjects. Decision level fusion of indices on the features has provided 100% accuracy for VQ, support vector machine (SVM), and K-nearest neighbour (KNN) modelling techniques to perform binary classification of the respiratory disease against healthy data sound. Deep recurrent and convolutional neural networks are also evaluated for multiple/binary classification of respiratory diseases.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-06915-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Acoustics ; Artificial Intelligence ; Artificial neural networks ; Breathing ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computed tomography ; Computer Science ; Data Mining and Knowledge Discovery ; Feature extraction ; Image classification ; Image Processing and Computer Vision ; Modelling ; Original Article ; Probability and Statistics in Computer Science ; Respiratory diseases ; Robustness ; Support vector machines ; Vector quantization</subject><ispartof>Neural computing &amp; applications, 2022-05, Vol.34 (10), p.8155-8172</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3</citedby><cites>FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3</cites><orcidid>0000-0003-1574-3045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Revathi, A.</creatorcontrib><creatorcontrib>Sasikaladevi, N.</creatorcontrib><creatorcontrib>Arunprasanth, D.</creatorcontrib><creatorcontrib>Amirtharajan, Rengarajan</creatorcontrib><title>Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. In this work, robust respiratory disease classification using breathing sounds ( RRDCBS) is implemented by extracting multiple features from sounds, creating multiple modelling techniques, and experimental identification of diseases using appropriate testing procedures for multi-class and binary classification of respiratory diseases. Decision level fusion of features for Vector quantisation (VQ) modelling technique has provided 100% accuracy for classifying five respiratory diseases and healthy subjects. Decision level fusion of indices on the features has provided 100% accuracy for VQ, support vector machine (SVM), and K-nearest neighbour (KNN) modelling techniques to perform binary classification of the respiratory disease against healthy data sound. Deep recurrent and convolutional neural networks are also evaluated for multiple/binary classification of respiratory diseases.</description><subject>Acoustics</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Breathing</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Respiratory diseases</subject><subject>Robustness</subject><subject>Support vector machines</subject><subject>Vector quantization</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8BL3qoTjLp11HXT1gQVj2HtE3WLt22ZtrD_nuzVvDmaQbmed-Bh7FzAdcCIL0hgFiKCKSMIMlFHMEBmwmFGCHE2SGbQa7COVF4zE6INgCgkiyeMbfqipEG7i31tTdD53e8qskasrxsDFHt6tIMddfykep2zQtvzfC536gb24r45Wp1v7h7u-LbsRnqvrHcBWIMhdy0Fd92lW3olB0505A9-51z9vH48L54jpavTy-L22VUosiHSKYKIUVME5uZLEuVtE66SkJSFFklRFXkSVZI41SJqTVKZXGJuYJSosIEC5yzi6m3993XaGnQm270bXipZRKLHJSKMVByokrfEXnrdO_rrfE7LUDvferJpw4-9Y9PDSGEU4gC3K6t_6v-J_UNztB4cQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Revathi, A.</creator><creator>Sasikaladevi, N.</creator><creator>Arunprasanth, D.</creator><creator>Amirtharajan, Rengarajan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1574-3045</orcidid></search><sort><creationdate>20220501</creationdate><title>Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models</title><author>Revathi, A. ; Sasikaladevi, N. ; Arunprasanth, D. ; Amirtharajan, Rengarajan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Breathing</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Respiratory diseases</topic><topic>Robustness</topic><topic>Support vector machines</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revathi, A.</creatorcontrib><creatorcontrib>Sasikaladevi, N.</creatorcontrib><creatorcontrib>Arunprasanth, D.</creatorcontrib><creatorcontrib>Amirtharajan, Rengarajan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Revathi, A.</au><au>Sasikaladevi, N.</au><au>Arunprasanth, D.</au><au>Amirtharajan, Rengarajan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>34</volume><issue>10</issue><spage>8155</spage><epage>8172</epage><pages>8155-8172</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. In this work, robust respiratory disease classification using breathing sounds ( RRDCBS) is implemented by extracting multiple features from sounds, creating multiple modelling techniques, and experimental identification of diseases using appropriate testing procedures for multi-class and binary classification of respiratory diseases. Decision level fusion of features for Vector quantisation (VQ) modelling technique has provided 100% accuracy for classifying five respiratory diseases and healthy subjects. Decision level fusion of indices on the features has provided 100% accuracy for VQ, support vector machine (SVM), and K-nearest neighbour (KNN) modelling techniques to perform binary classification of the respiratory disease against healthy data sound. Deep recurrent and convolutional neural networks are also evaluated for multiple/binary classification of respiratory diseases.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-06915-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1574-3045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-05, Vol.34 (10), p.8155-8172
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2651904453
source Springer Link
subjects Acoustics
Artificial Intelligence
Artificial neural networks
Breathing
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computed tomography
Computer Science
Data Mining and Knowledge Discovery
Feature extraction
Image classification
Image Processing and Computer Vision
Modelling
Original Article
Probability and Statistics in Computer Science
Respiratory diseases
Robustness
Support vector machines
Vector quantization
title Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20respiratory%20disease%20classification%20using%20breathing%20sounds%20(RRDCBS)%20multiple%20features%20and%20models&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Revathi,%20A.&rft.date=2022-05-01&rft.volume=34&rft.issue=10&rft.spage=8155&rft.epage=8172&rft.pages=8155-8172&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-06915-0&rft_dat=%3Cproquest_cross%3E2651904453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2651904453&rft_id=info:pmid/&rfr_iscdi=true