Loading…
Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models
Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. I...
Saved in:
Published in: | Neural computing & applications 2022-05, Vol.34 (10), p.8155-8172 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3 |
container_end_page | 8172 |
container_issue | 10 |
container_start_page | 8155 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Revathi, A. Sasikaladevi, N. Arunprasanth, D. Amirtharajan, Rengarajan |
description | Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. In this work, robust respiratory disease classification using breathing sounds
(
RRDCBS) is implemented by extracting multiple features from sounds, creating multiple modelling techniques, and experimental identification of diseases using appropriate testing procedures for multi-class and binary classification of respiratory diseases. Decision level fusion of features for Vector quantisation (VQ) modelling technique has provided 100% accuracy for classifying five respiratory diseases and healthy subjects. Decision level fusion of indices on the features has provided 100% accuracy for VQ, support vector machine (SVM), and K-nearest neighbour (KNN) modelling techniques to perform binary classification of the respiratory disease against healthy data sound. Deep recurrent and convolutional neural networks are also evaluated for multiple/binary classification of respiratory diseases. |
doi_str_mv | 10.1007/s00521-022-06915-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651904453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651904453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8BL3qoTjLp11HXT1gQVj2HtE3WLt22ZtrD_nuzVvDmaQbmed-Bh7FzAdcCIL0hgFiKCKSMIMlFHMEBmwmFGCHE2SGbQa7COVF4zE6INgCgkiyeMbfqipEG7i31tTdD53e8qskasrxsDFHt6tIMddfykep2zQtvzfC536gb24r45Wp1v7h7u-LbsRnqvrHcBWIMhdy0Fd92lW3olB0505A9-51z9vH48L54jpavTy-L22VUosiHSKYKIUVME5uZLEuVtE66SkJSFFklRFXkSVZI41SJqTVKZXGJuYJSosIEC5yzi6m3993XaGnQm270bXipZRKLHJSKMVByokrfEXnrdO_rrfE7LUDvferJpw4-9Y9PDSGEU4gC3K6t_6v-J_UNztB4cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651904453</pqid></control><display><type>article</type><title>Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models</title><source>Springer Link</source><creator>Revathi, A. ; Sasikaladevi, N. ; Arunprasanth, D. ; Amirtharajan, Rengarajan</creator><creatorcontrib>Revathi, A. ; Sasikaladevi, N. ; Arunprasanth, D. ; Amirtharajan, Rengarajan</creatorcontrib><description>Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. In this work, robust respiratory disease classification using breathing sounds
(
RRDCBS) is implemented by extracting multiple features from sounds, creating multiple modelling techniques, and experimental identification of diseases using appropriate testing procedures for multi-class and binary classification of respiratory diseases. Decision level fusion of features for Vector quantisation (VQ) modelling technique has provided 100% accuracy for classifying five respiratory diseases and healthy subjects. Decision level fusion of indices on the features has provided 100% accuracy for VQ, support vector machine (SVM), and K-nearest neighbour (KNN) modelling techniques to perform binary classification of the respiratory disease against healthy data sound. Deep recurrent and convolutional neural networks are also evaluated for multiple/binary classification of respiratory diseases.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-06915-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Acoustics ; Artificial Intelligence ; Artificial neural networks ; Breathing ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computed tomography ; Computer Science ; Data Mining and Knowledge Discovery ; Feature extraction ; Image classification ; Image Processing and Computer Vision ; Modelling ; Original Article ; Probability and Statistics in Computer Science ; Respiratory diseases ; Robustness ; Support vector machines ; Vector quantization</subject><ispartof>Neural computing & applications, 2022-05, Vol.34 (10), p.8155-8172</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3</citedby><cites>FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3</cites><orcidid>0000-0003-1574-3045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Revathi, A.</creatorcontrib><creatorcontrib>Sasikaladevi, N.</creatorcontrib><creatorcontrib>Arunprasanth, D.</creatorcontrib><creatorcontrib>Amirtharajan, Rengarajan</creatorcontrib><title>Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. In this work, robust respiratory disease classification using breathing sounds
(
RRDCBS) is implemented by extracting multiple features from sounds, creating multiple modelling techniques, and experimental identification of diseases using appropriate testing procedures for multi-class and binary classification of respiratory diseases. Decision level fusion of features for Vector quantisation (VQ) modelling technique has provided 100% accuracy for classifying five respiratory diseases and healthy subjects. Decision level fusion of indices on the features has provided 100% accuracy for VQ, support vector machine (SVM), and K-nearest neighbour (KNN) modelling techniques to perform binary classification of the respiratory disease against healthy data sound. Deep recurrent and convolutional neural networks are also evaluated for multiple/binary classification of respiratory diseases.</description><subject>Acoustics</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Breathing</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Respiratory diseases</subject><subject>Robustness</subject><subject>Support vector machines</subject><subject>Vector quantization</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8BL3qoTjLp11HXT1gQVj2HtE3WLt22ZtrD_nuzVvDmaQbmed-Bh7FzAdcCIL0hgFiKCKSMIMlFHMEBmwmFGCHE2SGbQa7COVF4zE6INgCgkiyeMbfqipEG7i31tTdD53e8qskasrxsDFHt6tIMddfykep2zQtvzfC536gb24r45Wp1v7h7u-LbsRnqvrHcBWIMhdy0Fd92lW3olB0505A9-51z9vH48L54jpavTy-L22VUosiHSKYKIUVME5uZLEuVtE66SkJSFFklRFXkSVZI41SJqTVKZXGJuYJSosIEC5yzi6m3993XaGnQm270bXipZRKLHJSKMVByokrfEXnrdO_rrfE7LUDvferJpw4-9Y9PDSGEU4gC3K6t_6v-J_UNztB4cQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Revathi, A.</creator><creator>Sasikaladevi, N.</creator><creator>Arunprasanth, D.</creator><creator>Amirtharajan, Rengarajan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1574-3045</orcidid></search><sort><creationdate>20220501</creationdate><title>Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models</title><author>Revathi, A. ; Sasikaladevi, N. ; Arunprasanth, D. ; Amirtharajan, Rengarajan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Breathing</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Respiratory diseases</topic><topic>Robustness</topic><topic>Support vector machines</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revathi, A.</creatorcontrib><creatorcontrib>Sasikaladevi, N.</creatorcontrib><creatorcontrib>Arunprasanth, D.</creatorcontrib><creatorcontrib>Amirtharajan, Rengarajan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Revathi, A.</au><au>Sasikaladevi, N.</au><au>Arunprasanth, D.</au><au>Amirtharajan, Rengarajan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>34</volume><issue>10</issue><spage>8155</spage><epage>8172</epage><pages>8155-8172</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Classification of respiratory diseases using X-ray and CT scan images of lungs is currently practised and used by many medical practitioners for clinical diagnosis. Respiratory disease classification, using breathing and wheezing sounds, remains scarce in the research field and is slowly upcoming. In this work, robust respiratory disease classification using breathing sounds
(
RRDCBS) is implemented by extracting multiple features from sounds, creating multiple modelling techniques, and experimental identification of diseases using appropriate testing procedures for multi-class and binary classification of respiratory diseases. Decision level fusion of features for Vector quantisation (VQ) modelling technique has provided 100% accuracy for classifying five respiratory diseases and healthy subjects. Decision level fusion of indices on the features has provided 100% accuracy for VQ, support vector machine (SVM), and K-nearest neighbour (KNN) modelling techniques to perform binary classification of the respiratory disease against healthy data sound. Deep recurrent and convolutional neural networks are also evaluated for multiple/binary classification of respiratory diseases.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-06915-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1574-3045</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-05, Vol.34 (10), p.8155-8172 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2651904453 |
source | Springer Link |
subjects | Acoustics Artificial Intelligence Artificial neural networks Breathing Classification Computational Biology/Bioinformatics Computational Science and Engineering Computed tomography Computer Science Data Mining and Knowledge Discovery Feature extraction Image classification Image Processing and Computer Vision Modelling Original Article Probability and Statistics in Computer Science Respiratory diseases Robustness Support vector machines Vector quantization |
title | Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20respiratory%20disease%20classification%20using%20breathing%20sounds%20(RRDCBS)%20multiple%20features%20and%20models&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Revathi,%20A.&rft.date=2022-05-01&rft.volume=34&rft.issue=10&rft.spage=8155&rft.epage=8172&rft.pages=8155-8172&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-06915-0&rft_dat=%3Cproquest_cross%3E2651904453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2743073376e8a88742ef2fd206bb8d11db968b2af4c37ea4485c3940c234363b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2651904453&rft_id=info:pmid/&rfr_iscdi=true |