Loading…

Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate

In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximati...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in biomechanics and biomedical engineering 2022-05, Vol.25 (6), p.619-640
Main Authors: Khan, Amir, Zarin, Rahat, Khan, Saddam, Saeed, Anwar, Gul, Taza, Humphries, Usa Wannasingha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643
cites cdi_FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643
container_end_page 640
container_issue 6
container_start_page 619
container_title Computer methods in biomechanics and biomedical engineering
container_volume 25
creator Khan, Amir
Zarin, Rahat
Khan, Saddam
Saeed, Anwar
Gul, Taza
Humphries, Usa Wannasingha
description In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number.
doi_str_mv 10.1080/10255842.2021.1972096
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651909747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651909747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643</originalsourceid><addsrcrecordid>eNp9kU9vFCEYh4nR2Fr9CBoSL73Mlv8MN83aapMmvahXwjLvpDTMsAUmZr592ezWgwe5wBue90d4H4Q-UrKhpCdXlDApe8E2jDC6oUYzYtQrdE6FVl3PpHndzo3pDtAZelfKIyGkp714i864aHhb5-jpJjtfQ5pdxMM6uyn4gt084FLdLsRQ11a5uJZQcBrx9v737beOGrxvDDQYT2mAiJdWZVwfAD-4PKX5cAFuxnXdAw6zDwPMHnB2Fd6jN6OLBT6c9gv06-b65_ZHd3f__Xb79a7z3IjawSiUUHKgjHFJ-h0DqnVvOJMD58IrA1IQ7p3YCWO49kqKUXshetBcUCX4Bbo85u5zelqgVDuF4iFGN0Naim0jatnCKNrQz_-gj2nJ7duNUpIaYrTQjZJHyudUSobR7nOYXF4tJfbgxL44sQcn9uSk9X06pS-7CYa_XS8SGvDlCIR5THlyf1KOg61ujSmP2bXpFcv__8YzTyCYsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651909747</pqid></control><display><type>article</type><title>Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate</title><source>Taylor and Francis Science and Technology Collection</source><creator>Khan, Amir ; Zarin, Rahat ; Khan, Saddam ; Saeed, Anwar ; Gul, Taza ; Humphries, Usa Wannasingha</creator><creatorcontrib>Khan, Amir ; Zarin, Rahat ; Khan, Saddam ; Saeed, Anwar ; Gul, Taza ; Humphries, Usa Wannasingha</creatorcontrib><description>In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number.</description><identifier>ISSN: 1025-5842</identifier><identifier>EISSN: 1476-8259</identifier><identifier>DOI: 10.1080/10255842.2021.1972096</identifier><identifier>PMID: 34720000</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Basic Reproduction Number ; Caputo-Fabrizio derivative ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; Dynamic stability ; Humans ; Incidence ; Mathematical models ; Numerical simulations ; Pandemic model ; Pandemics ; Parameter identification ; Reproduction ; Runge-Kutta method ; Sensitivity analysis ; Stability analysis</subject><ispartof>Computer methods in biomechanics and biomedical engineering, 2022-05, Vol.25 (6), p.619-640</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643</citedby><cites>FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34720000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Amir</creatorcontrib><creatorcontrib>Zarin, Rahat</creatorcontrib><creatorcontrib>Khan, Saddam</creatorcontrib><creatorcontrib>Saeed, Anwar</creatorcontrib><creatorcontrib>Gul, Taza</creatorcontrib><creatorcontrib>Humphries, Usa Wannasingha</creatorcontrib><title>Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate</title><title>Computer methods in biomechanics and biomedical engineering</title><addtitle>Comput Methods Biomech Biomed Engin</addtitle><description>In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number.</description><subject>Basic Reproduction Number</subject><subject>Caputo-Fabrizio derivative</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Dynamic stability</subject><subject>Humans</subject><subject>Incidence</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Pandemic model</subject><subject>Pandemics</subject><subject>Parameter identification</subject><subject>Reproduction</subject><subject>Runge-Kutta method</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><issn>1025-5842</issn><issn>1476-8259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vFCEYh4nR2Fr9CBoSL73Mlv8MN83aapMmvahXwjLvpDTMsAUmZr592ezWgwe5wBue90d4H4Q-UrKhpCdXlDApe8E2jDC6oUYzYtQrdE6FVl3PpHndzo3pDtAZelfKIyGkp714i864aHhb5-jpJjtfQ5pdxMM6uyn4gt084FLdLsRQ11a5uJZQcBrx9v737beOGrxvDDQYT2mAiJdWZVwfAD-4PKX5cAFuxnXdAw6zDwPMHnB2Fd6jN6OLBT6c9gv06-b65_ZHd3f__Xb79a7z3IjawSiUUHKgjHFJ-h0DqnVvOJMD58IrA1IQ7p3YCWO49kqKUXshetBcUCX4Bbo85u5zelqgVDuF4iFGN0Naim0jatnCKNrQz_-gj2nJ7duNUpIaYrTQjZJHyudUSobR7nOYXF4tJfbgxL44sQcn9uSk9X06pS-7CYa_XS8SGvDlCIR5THlyf1KOg61ujSmP2bXpFcv__8YzTyCYsw</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Khan, Amir</creator><creator>Zarin, Rahat</creator><creator>Khan, Saddam</creator><creator>Saeed, Anwar</creator><creator>Gul, Taza</creator><creator>Humphries, Usa Wannasingha</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202205</creationdate><title>Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate</title><author>Khan, Amir ; Zarin, Rahat ; Khan, Saddam ; Saeed, Anwar ; Gul, Taza ; Humphries, Usa Wannasingha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basic Reproduction Number</topic><topic>Caputo-Fabrizio derivative</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Dynamic stability</topic><topic>Humans</topic><topic>Incidence</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Pandemic model</topic><topic>Pandemics</topic><topic>Parameter identification</topic><topic>Reproduction</topic><topic>Runge-Kutta method</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Amir</creatorcontrib><creatorcontrib>Zarin, Rahat</creatorcontrib><creatorcontrib>Khan, Saddam</creatorcontrib><creatorcontrib>Saeed, Anwar</creatorcontrib><creatorcontrib>Gul, Taza</creatorcontrib><creatorcontrib>Humphries, Usa Wannasingha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Amir</au><au>Zarin, Rahat</au><au>Khan, Saddam</au><au>Saeed, Anwar</au><au>Gul, Taza</au><au>Humphries, Usa Wannasingha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate</atitle><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle><addtitle>Comput Methods Biomech Biomed Engin</addtitle><date>2022-05</date><risdate>2022</risdate><volume>25</volume><issue>6</issue><spage>619</spage><epage>640</epage><pages>619-640</pages><issn>1025-5842</issn><eissn>1476-8259</eissn><abstract>In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>34720000</pmid><doi>10.1080/10255842.2021.1972096</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1025-5842
ispartof Computer methods in biomechanics and biomedical engineering, 2022-05, Vol.25 (6), p.619-640
issn 1025-5842
1476-8259
language eng
recordid cdi_proquest_journals_2651909747
source Taylor and Francis Science and Technology Collection
subjects Basic Reproduction Number
Caputo-Fabrizio derivative
Coronaviruses
COVID-19
COVID-19 - epidemiology
Dynamic stability
Humans
Incidence
Mathematical models
Numerical simulations
Pandemic model
Pandemics
Parameter identification
Reproduction
Runge-Kutta method
Sensitivity analysis
Stability analysis
title Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20dynamics%20and%20stability%20analysis%20of%20COVID-19%20pandemic%20model%20under%20the%20harmonic%20mean%20type%20incidence%20rate&rft.jtitle=Computer%20methods%20in%20biomechanics%20and%20biomedical%20engineering&rft.au=Khan,%20Amir&rft.date=2022-05&rft.volume=25&rft.issue=6&rft.spage=619&rft.epage=640&rft.pages=619-640&rft.issn=1025-5842&rft.eissn=1476-8259&rft_id=info:doi/10.1080/10255842.2021.1972096&rft_dat=%3Cproquest_cross%3E2651909747%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2651909747&rft_id=info:pmid/34720000&rfr_iscdi=true