Loading…
Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate
In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximati...
Saved in:
Published in: | Computer methods in biomechanics and biomedical engineering 2022-05, Vol.25 (6), p.619-640 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643 |
container_end_page | 640 |
container_issue | 6 |
container_start_page | 619 |
container_title | Computer methods in biomechanics and biomedical engineering |
container_volume | 25 |
creator | Khan, Amir Zarin, Rahat Khan, Saddam Saeed, Anwar Gul, Taza Humphries, Usa Wannasingha |
description | In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number. |
doi_str_mv | 10.1080/10255842.2021.1972096 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651909747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651909747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643</originalsourceid><addsrcrecordid>eNp9kU9vFCEYh4nR2Fr9CBoSL73Mlv8MN83aapMmvahXwjLvpDTMsAUmZr592ezWgwe5wBue90d4H4Q-UrKhpCdXlDApe8E2jDC6oUYzYtQrdE6FVl3PpHndzo3pDtAZelfKIyGkp714i864aHhb5-jpJjtfQ5pdxMM6uyn4gt084FLdLsRQ11a5uJZQcBrx9v737beOGrxvDDQYT2mAiJdWZVwfAD-4PKX5cAFuxnXdAw6zDwPMHnB2Fd6jN6OLBT6c9gv06-b65_ZHd3f__Xb79a7z3IjawSiUUHKgjHFJ-h0DqnVvOJMD58IrA1IQ7p3YCWO49kqKUXshetBcUCX4Bbo85u5zelqgVDuF4iFGN0Naim0jatnCKNrQz_-gj2nJ7duNUpIaYrTQjZJHyudUSobR7nOYXF4tJfbgxL44sQcn9uSk9X06pS-7CYa_XS8SGvDlCIR5THlyf1KOg61ujSmP2bXpFcv__8YzTyCYsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651909747</pqid></control><display><type>article</type><title>Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate</title><source>Taylor and Francis Science and Technology Collection</source><creator>Khan, Amir ; Zarin, Rahat ; Khan, Saddam ; Saeed, Anwar ; Gul, Taza ; Humphries, Usa Wannasingha</creator><creatorcontrib>Khan, Amir ; Zarin, Rahat ; Khan, Saddam ; Saeed, Anwar ; Gul, Taza ; Humphries, Usa Wannasingha</creatorcontrib><description>In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number.</description><identifier>ISSN: 1025-5842</identifier><identifier>EISSN: 1476-8259</identifier><identifier>DOI: 10.1080/10255842.2021.1972096</identifier><identifier>PMID: 34720000</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Basic Reproduction Number ; Caputo-Fabrizio derivative ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; Dynamic stability ; Humans ; Incidence ; Mathematical models ; Numerical simulations ; Pandemic model ; Pandemics ; Parameter identification ; Reproduction ; Runge-Kutta method ; Sensitivity analysis ; Stability analysis</subject><ispartof>Computer methods in biomechanics and biomedical engineering, 2022-05, Vol.25 (6), p.619-640</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643</citedby><cites>FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34720000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Amir</creatorcontrib><creatorcontrib>Zarin, Rahat</creatorcontrib><creatorcontrib>Khan, Saddam</creatorcontrib><creatorcontrib>Saeed, Anwar</creatorcontrib><creatorcontrib>Gul, Taza</creatorcontrib><creatorcontrib>Humphries, Usa Wannasingha</creatorcontrib><title>Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate</title><title>Computer methods in biomechanics and biomedical engineering</title><addtitle>Comput Methods Biomech Biomed Engin</addtitle><description>In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number.</description><subject>Basic Reproduction Number</subject><subject>Caputo-Fabrizio derivative</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Dynamic stability</subject><subject>Humans</subject><subject>Incidence</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Pandemic model</subject><subject>Pandemics</subject><subject>Parameter identification</subject><subject>Reproduction</subject><subject>Runge-Kutta method</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><issn>1025-5842</issn><issn>1476-8259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vFCEYh4nR2Fr9CBoSL73Mlv8MN83aapMmvahXwjLvpDTMsAUmZr592ezWgwe5wBue90d4H4Q-UrKhpCdXlDApe8E2jDC6oUYzYtQrdE6FVl3PpHndzo3pDtAZelfKIyGkp714i864aHhb5-jpJjtfQ5pdxMM6uyn4gt084FLdLsRQ11a5uJZQcBrx9v737beOGrxvDDQYT2mAiJdWZVwfAD-4PKX5cAFuxnXdAw6zDwPMHnB2Fd6jN6OLBT6c9gv06-b65_ZHd3f__Xb79a7z3IjawSiUUHKgjHFJ-h0DqnVvOJMD58IrA1IQ7p3YCWO49kqKUXshetBcUCX4Bbo85u5zelqgVDuF4iFGN0Naim0jatnCKNrQz_-gj2nJ7duNUpIaYrTQjZJHyudUSobR7nOYXF4tJfbgxL44sQcn9uSk9X06pS-7CYa_XS8SGvDlCIR5THlyf1KOg61ujSmP2bXpFcv__8YzTyCYsw</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Khan, Amir</creator><creator>Zarin, Rahat</creator><creator>Khan, Saddam</creator><creator>Saeed, Anwar</creator><creator>Gul, Taza</creator><creator>Humphries, Usa Wannasingha</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202205</creationdate><title>Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate</title><author>Khan, Amir ; Zarin, Rahat ; Khan, Saddam ; Saeed, Anwar ; Gul, Taza ; Humphries, Usa Wannasingha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basic Reproduction Number</topic><topic>Caputo-Fabrizio derivative</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Dynamic stability</topic><topic>Humans</topic><topic>Incidence</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Pandemic model</topic><topic>Pandemics</topic><topic>Parameter identification</topic><topic>Reproduction</topic><topic>Runge-Kutta method</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Amir</creatorcontrib><creatorcontrib>Zarin, Rahat</creatorcontrib><creatorcontrib>Khan, Saddam</creatorcontrib><creatorcontrib>Saeed, Anwar</creatorcontrib><creatorcontrib>Gul, Taza</creatorcontrib><creatorcontrib>Humphries, Usa Wannasingha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Amir</au><au>Zarin, Rahat</au><au>Khan, Saddam</au><au>Saeed, Anwar</au><au>Gul, Taza</au><au>Humphries, Usa Wannasingha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate</atitle><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle><addtitle>Comput Methods Biomech Biomed Engin</addtitle><date>2022-05</date><risdate>2022</risdate><volume>25</volume><issue>6</issue><spage>619</spage><epage>640</epage><pages>619-640</pages><issn>1025-5842</issn><eissn>1476-8259</eissn><abstract>In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>34720000</pmid><doi>10.1080/10255842.2021.1972096</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1025-5842 |
ispartof | Computer methods in biomechanics and biomedical engineering, 2022-05, Vol.25 (6), p.619-640 |
issn | 1025-5842 1476-8259 |
language | eng |
recordid | cdi_proquest_journals_2651909747 |
source | Taylor and Francis Science and Technology Collection |
subjects | Basic Reproduction Number Caputo-Fabrizio derivative Coronaviruses COVID-19 COVID-19 - epidemiology Dynamic stability Humans Incidence Mathematical models Numerical simulations Pandemic model Pandemics Parameter identification Reproduction Runge-Kutta method Sensitivity analysis Stability analysis |
title | Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20dynamics%20and%20stability%20analysis%20of%20COVID-19%20pandemic%20model%20under%20the%20harmonic%20mean%20type%20incidence%20rate&rft.jtitle=Computer%20methods%20in%20biomechanics%20and%20biomedical%20engineering&rft.au=Khan,%20Amir&rft.date=2022-05&rft.volume=25&rft.issue=6&rft.spage=619&rft.epage=640&rft.pages=619-640&rft.issn=1025-5842&rft.eissn=1476-8259&rft_id=info:doi/10.1080/10255842.2021.1972096&rft_dat=%3Cproquest_cross%3E2651909747%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-ef46465d1223508b2e17789325d334c69e5403ca4b49937c654f7c448e7341643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2651909747&rft_id=info:pmid/34720000&rfr_iscdi=true |