Loading…

Numerical investigation of turbulent features past different mechanical aortic valves

Flow through mechanical aortic valves (MAVs) has been constantly associated to higher haemolysis and platelet activation levels with respect to native valves, due to non-physiologic haemodynamic features. Both computational and experimental investigations have correlated the blood damage to augmente...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2022-06, Vol.940, Article A43
Main Authors: Nitti, A., De Cillis, G., de Tullio, M.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c232t-68b31842e3687bad52850b423e30c6ac5f6f1a96122ba0e8f59a19c387da286c3
cites cdi_FETCH-LOGICAL-c232t-68b31842e3687bad52850b423e30c6ac5f6f1a96122ba0e8f59a19c387da286c3
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 940
creator Nitti, A.
De Cillis, G.
de Tullio, M.D.
description Flow through mechanical aortic valves (MAVs) has been constantly associated to higher haemolysis and platelet activation levels with respect to native valves, due to non-physiologic haemodynamic features. Both computational and experimental investigations have correlated the blood damage to augmented levels of turbulent stress downstream of MAVs. This study provides a computational estimation, drawn from high-resolution direct numerical simulations, of turbulent and fluctuating viscous stresses in three different MAV configurations, at subsequent stages of the cardiac cycle. The configurations comprise a St. Judes Medical Regent valve (SJMV), a Lapeyre-Triflo FURTIVA valve (LTFV) with three leaflets, and a SJMV with vortex generators (VGs). Non-standard configurations are expected to mitigate the mean stress level on blood constituents reducing the turbulent production. Computations are carried out by means of a finite-difference flow solver with a direct-forcing immersed boundary technique to handle fixed and moving bodies. The VGs are found to provide instabilities which corrupt the Kármán-like vortex shedding downstream of the leaflets, reducing the intensity of turbulent kinetic energy at the peak flow rate, thus lowering the local Reynolds shear stress. Conversely, the LTFV configuration provides comparable haemodynamic performance at peak flow rate but further reduced stress level in the deceleration phase. These interpretations are supported by probability density distributions from three-dimensional fields, and further corroborated by a pointwise mapping of the Taylor length scale and local energy spectra. The outcomes of this study might potentially be exploited to improve the design of new-generation MAVs, with the aim of decreasing the risk of thromboembolic complications.
doi_str_mv 10.1017/jfm.2022.256
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651974814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_256</cupid><sourcerecordid>2651974814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-68b31842e3687bad52850b423e30c6ac5f6f1a96122ba0e8f59a19c387da286c3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKs7f8CAW2fMY5LJLKVoFYpu7DrcySQ1ZR41yRT896a24MbV5R7OOffyIXRLcEEwqR62ti8oprSgXJyhGSlFnVei5OdohpOcE0LxJboKYYsxYbiuZmj9NvXGOw1d5oa9CdFtILpxyEabxck3U2eGmFkDaTEh20GIWeusNf6g90Z_wvCbhtFHp7M9dKnlGl1Y6IK5Oc05Wj8_fSxe8tX78nXxuMo1ZTTmQjaMyJIaJmTVQMup5LgpKTMMawGaW2EJ1IJQ2gA20vIaSK2ZrFqgUmg2R3fH3p0fv6b0vdqOkx_SSUUFJ3VVSlIm1_3Rpf0YgjdW7bzrwX8rgtUBnErg1AGcSuCSvTjZoW-8azfmr_XfwA-S0nDG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651974814</pqid></control><display><type>article</type><title>Numerical investigation of turbulent features past different mechanical aortic valves</title><source>Cambridge University Press</source><creator>Nitti, A. ; De Cillis, G. ; de Tullio, M.D.</creator><creatorcontrib>Nitti, A. ; De Cillis, G. ; de Tullio, M.D.</creatorcontrib><description>Flow through mechanical aortic valves (MAVs) has been constantly associated to higher haemolysis and platelet activation levels with respect to native valves, due to non-physiologic haemodynamic features. Both computational and experimental investigations have correlated the blood damage to augmented levels of turbulent stress downstream of MAVs. This study provides a computational estimation, drawn from high-resolution direct numerical simulations, of turbulent and fluctuating viscous stresses in three different MAV configurations, at subsequent stages of the cardiac cycle. The configurations comprise a St. Judes Medical Regent valve (SJMV), a Lapeyre-Triflo FURTIVA valve (LTFV) with three leaflets, and a SJMV with vortex generators (VGs). Non-standard configurations are expected to mitigate the mean stress level on blood constituents reducing the turbulent production. Computations are carried out by means of a finite-difference flow solver with a direct-forcing immersed boundary technique to handle fixed and moving bodies. The VGs are found to provide instabilities which corrupt the Kármán-like vortex shedding downstream of the leaflets, reducing the intensity of turbulent kinetic energy at the peak flow rate, thus lowering the local Reynolds shear stress. Conversely, the LTFV configuration provides comparable haemodynamic performance at peak flow rate but further reduced stress level in the deceleration phase. These interpretations are supported by probability density distributions from three-dimensional fields, and further corroborated by a pointwise mapping of the Taylor length scale and local energy spectra. The outcomes of this study might potentially be exploited to improve the design of new-generation MAVs, with the aim of decreasing the risk of thromboembolic complications.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.256</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aorta ; Blood ; Blood platelets ; Computer applications ; Configuration management ; Deceleration ; Direct numerical simulation ; Energy spectra ; Finite difference method ; Flow velocity ; Fluid flow ; Fluid mechanics ; Haemolysis ; Heart valves ; Hemodynamics ; JFM Papers ; Kinematics ; Kinetic energy ; Probability theory ; Prostheses ; Risk reduction ; Shear stress ; Simulation ; Thromboembolism ; Thrombosis ; Turbulent flow ; Vortex generators ; Vortex shedding</subject><ispartof>Journal of fluid mechanics, 2022-06, Vol.940, Article A43</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-68b31842e3687bad52850b423e30c6ac5f6f1a96122ba0e8f59a19c387da286c3</citedby><cites>FETCH-LOGICAL-c232t-68b31842e3687bad52850b423e30c6ac5f6f1a96122ba0e8f59a19c387da286c3</cites><orcidid>0000-0002-7585-9405 ; 0000-0002-0750-5787 ; 0000-0002-8476-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022002567/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Nitti, A.</creatorcontrib><creatorcontrib>De Cillis, G.</creatorcontrib><creatorcontrib>de Tullio, M.D.</creatorcontrib><title>Numerical investigation of turbulent features past different mechanical aortic valves</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Flow through mechanical aortic valves (MAVs) has been constantly associated to higher haemolysis and platelet activation levels with respect to native valves, due to non-physiologic haemodynamic features. Both computational and experimental investigations have correlated the blood damage to augmented levels of turbulent stress downstream of MAVs. This study provides a computational estimation, drawn from high-resolution direct numerical simulations, of turbulent and fluctuating viscous stresses in three different MAV configurations, at subsequent stages of the cardiac cycle. The configurations comprise a St. Judes Medical Regent valve (SJMV), a Lapeyre-Triflo FURTIVA valve (LTFV) with three leaflets, and a SJMV with vortex generators (VGs). Non-standard configurations are expected to mitigate the mean stress level on blood constituents reducing the turbulent production. Computations are carried out by means of a finite-difference flow solver with a direct-forcing immersed boundary technique to handle fixed and moving bodies. The VGs are found to provide instabilities which corrupt the Kármán-like vortex shedding downstream of the leaflets, reducing the intensity of turbulent kinetic energy at the peak flow rate, thus lowering the local Reynolds shear stress. Conversely, the LTFV configuration provides comparable haemodynamic performance at peak flow rate but further reduced stress level in the deceleration phase. These interpretations are supported by probability density distributions from three-dimensional fields, and further corroborated by a pointwise mapping of the Taylor length scale and local energy spectra. The outcomes of this study might potentially be exploited to improve the design of new-generation MAVs, with the aim of decreasing the risk of thromboembolic complications.</description><subject>Aorta</subject><subject>Blood</subject><subject>Blood platelets</subject><subject>Computer applications</subject><subject>Configuration management</subject><subject>Deceleration</subject><subject>Direct numerical simulation</subject><subject>Energy spectra</subject><subject>Finite difference method</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Haemolysis</subject><subject>Heart valves</subject><subject>Hemodynamics</subject><subject>JFM Papers</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Probability theory</subject><subject>Prostheses</subject><subject>Risk reduction</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Turbulent flow</subject><subject>Vortex generators</subject><subject>Vortex shedding</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKs7f8CAW2fMY5LJLKVoFYpu7DrcySQ1ZR41yRT896a24MbV5R7OOffyIXRLcEEwqR62ti8oprSgXJyhGSlFnVei5OdohpOcE0LxJboKYYsxYbiuZmj9NvXGOw1d5oa9CdFtILpxyEabxck3U2eGmFkDaTEh20GIWeusNf6g90Z_wvCbhtFHp7M9dKnlGl1Y6IK5Oc05Wj8_fSxe8tX78nXxuMo1ZTTmQjaMyJIaJmTVQMup5LgpKTMMawGaW2EJ1IJQ2gA20vIaSK2ZrFqgUmg2R3fH3p0fv6b0vdqOkx_SSUUFJ3VVSlIm1_3Rpf0YgjdW7bzrwX8rgtUBnErg1AGcSuCSvTjZoW-8azfmr_XfwA-S0nDG</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Nitti, A.</creator><creator>De Cillis, G.</creator><creator>de Tullio, M.D.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7585-9405</orcidid><orcidid>https://orcid.org/0000-0002-0750-5787</orcidid><orcidid>https://orcid.org/0000-0002-8476-749X</orcidid></search><sort><creationdate>20220610</creationdate><title>Numerical investigation of turbulent features past different mechanical aortic valves</title><author>Nitti, A. ; De Cillis, G. ; de Tullio, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-68b31842e3687bad52850b423e30c6ac5f6f1a96122ba0e8f59a19c387da286c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aorta</topic><topic>Blood</topic><topic>Blood platelets</topic><topic>Computer applications</topic><topic>Configuration management</topic><topic>Deceleration</topic><topic>Direct numerical simulation</topic><topic>Energy spectra</topic><topic>Finite difference method</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Haemolysis</topic><topic>Heart valves</topic><topic>Hemodynamics</topic><topic>JFM Papers</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Probability theory</topic><topic>Prostheses</topic><topic>Risk reduction</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Turbulent flow</topic><topic>Vortex generators</topic><topic>Vortex shedding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitti, A.</creatorcontrib><creatorcontrib>De Cillis, G.</creatorcontrib><creatorcontrib>de Tullio, M.D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitti, A.</au><au>De Cillis, G.</au><au>de Tullio, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of turbulent features past different mechanical aortic valves</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>940</volume><artnum>A43</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Flow through mechanical aortic valves (MAVs) has been constantly associated to higher haemolysis and platelet activation levels with respect to native valves, due to non-physiologic haemodynamic features. Both computational and experimental investigations have correlated the blood damage to augmented levels of turbulent stress downstream of MAVs. This study provides a computational estimation, drawn from high-resolution direct numerical simulations, of turbulent and fluctuating viscous stresses in three different MAV configurations, at subsequent stages of the cardiac cycle. The configurations comprise a St. Judes Medical Regent valve (SJMV), a Lapeyre-Triflo FURTIVA valve (LTFV) with three leaflets, and a SJMV with vortex generators (VGs). Non-standard configurations are expected to mitigate the mean stress level on blood constituents reducing the turbulent production. Computations are carried out by means of a finite-difference flow solver with a direct-forcing immersed boundary technique to handle fixed and moving bodies. The VGs are found to provide instabilities which corrupt the Kármán-like vortex shedding downstream of the leaflets, reducing the intensity of turbulent kinetic energy at the peak flow rate, thus lowering the local Reynolds shear stress. Conversely, the LTFV configuration provides comparable haemodynamic performance at peak flow rate but further reduced stress level in the deceleration phase. These interpretations are supported by probability density distributions from three-dimensional fields, and further corroborated by a pointwise mapping of the Taylor length scale and local energy spectra. The outcomes of this study might potentially be exploited to improve the design of new-generation MAVs, with the aim of decreasing the risk of thromboembolic complications.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.256</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-7585-9405</orcidid><orcidid>https://orcid.org/0000-0002-0750-5787</orcidid><orcidid>https://orcid.org/0000-0002-8476-749X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-06, Vol.940, Article A43
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2651974814
source Cambridge University Press
subjects Aorta
Blood
Blood platelets
Computer applications
Configuration management
Deceleration
Direct numerical simulation
Energy spectra
Finite difference method
Flow velocity
Fluid flow
Fluid mechanics
Haemolysis
Heart valves
Hemodynamics
JFM Papers
Kinematics
Kinetic energy
Probability theory
Prostheses
Risk reduction
Shear stress
Simulation
Thromboembolism
Thrombosis
Turbulent flow
Vortex generators
Vortex shedding
title Numerical investigation of turbulent features past different mechanical aortic valves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20turbulent%20features%20past%20different%20mechanical%20aortic%20valves&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Nitti,%20A.&rft.date=2022-06-10&rft.volume=940&rft.artnum=A43&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.256&rft_dat=%3Cproquest_cross%3E2651974814%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c232t-68b31842e3687bad52850b423e30c6ac5f6f1a96122ba0e8f59a19c387da286c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2651974814&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_256&rfr_iscdi=true