Loading…

Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption

Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022, Vol.10 (16), p.8807-8816
Main Authors: Shi, Xiaofeng, Wu, Zhengchen, Liu, Zhengwang, Lv, Jianguo, Zhenfa Zi, Che, Renchao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8816
container_issue 16
container_start_page 8807
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 10
creator Shi, Xiaofeng
Wu, Zhengchen
Liu, Zhengwang
Lv, Jianguo
Zhenfa Zi
Che, Renchao
description Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfully fabricated via polydopamine confinement and sequential calcination. In the product, each primary nanoparticle (Fe3O4 microsphere) is confined within a thin layer of carbon, constructing a multi-interface heterostructure. Interface engineering in such a hierarchical assembly of Fe3O4@C core–shell nanoparticles results in unique performance superiority in terms of microwave absorption compared with traditional carbon-coated Fe3O4 microspheres. The maximum reflection loss value reaches −55.4 dB, and the broad effective absorption bandwidth covers a range as wide as 9.5 GHz (8.5–18 GHz) at only 2.0 mm. Importantly, the confinement effect simultaneously results in strong magnetic coupling interactions and a well-defined charge distribution at the contacted interfaces, which ultimately enhance the magnetic loss and dielectric loss, respectively. Besides, the dielectric carbon shell with optimized thickness facilitates the spread of the magnetic flux line, leading to intensive magnetic–dielectric synergy as well as matched impedance. These results might provide a new insight into the preparation of highly efficient microwave absorbers by optimal microstructure engineering.
doi_str_mv 10.1039/d1ta11005e
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2652041089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652041089</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-41e62fecea6e64e59530c09c9f412614e120eadd0a7c1691c0de4c9045ada7213</originalsourceid><addsrcrecordid>eNo9jUFLAzEUhIMoWGov_oKA59X3stl0c5RitVDoRc_lNfvS3dIma7JV-u9dUJzLDAzzjRD3CI8IpX1qcCBEgIqvxERBBcVcW3P9n-v6VsxyPsCoGsBYOxGXVRg4eXIsOey7wJy6sJddkEPLsu04UXJt5-goKWc-7Y4XGb10lHYxFC4GP24aueRyo2WgEHPfcuIsfUwjsaXgxvrUuRS_6Ysl7XJM_dDFcCduPB0zz_58Kj6WL--Lt2K9eV0tntdFj3U5FBrZKM-OybDRXNmqBAfWWa9RGdSMCpiaBmju0Fh00LB2FnRFDc0VllPx8MvtU_w8cx62h3hOYbzcKlMp0Ai1LX8AYsdg4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652041089</pqid></control><display><type>article</type><title>Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption</title><source>Royal Society of Chemistry</source><creator>Shi, Xiaofeng ; Wu, Zhengchen ; Liu, Zhengwang ; Lv, Jianguo ; Zhenfa Zi ; Che, Renchao</creator><creatorcontrib>Shi, Xiaofeng ; Wu, Zhengchen ; Liu, Zhengwang ; Lv, Jianguo ; Zhenfa Zi ; Che, Renchao</creatorcontrib><description>Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfully fabricated via polydopamine confinement and sequential calcination. In the product, each primary nanoparticle (Fe3O4 microsphere) is confined within a thin layer of carbon, constructing a multi-interface heterostructure. Interface engineering in such a hierarchical assembly of Fe3O4@C core–shell nanoparticles results in unique performance superiority in terms of microwave absorption compared with traditional carbon-coated Fe3O4 microspheres. The maximum reflection loss value reaches −55.4 dB, and the broad effective absorption bandwidth covers a range as wide as 9.5 GHz (8.5–18 GHz) at only 2.0 mm. Importantly, the confinement effect simultaneously results in strong magnetic coupling interactions and a well-defined charge distribution at the contacted interfaces, which ultimately enhance the magnetic loss and dielectric loss, respectively. Besides, the dielectric carbon shell with optimized thickness facilitates the spread of the magnetic flux line, leading to intensive magnetic–dielectric synergy as well as matched impedance. These results might provide a new insight into the preparation of highly efficient microwave absorbers by optimal microstructure engineering.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta11005e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Assembly ; Carbon ; Charge distribution ; Confinement ; Core-shell particles ; Dielectric loss ; Dielectric polarization ; Dielectric relaxation ; Engineering ; Heterostructures ; Impedance matching ; Interfaces ; Iron oxides ; Magnetic flux ; Microspheres ; Microwave absorbers ; Microwave absorption ; Nanoparticles ; Nanospheres</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022, Vol.10 (16), p.8807-8816</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Shi, Xiaofeng</creatorcontrib><creatorcontrib>Wu, Zhengchen</creatorcontrib><creatorcontrib>Liu, Zhengwang</creatorcontrib><creatorcontrib>Lv, Jianguo</creatorcontrib><creatorcontrib>Zhenfa Zi</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><title>Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfully fabricated via polydopamine confinement and sequential calcination. In the product, each primary nanoparticle (Fe3O4 microsphere) is confined within a thin layer of carbon, constructing a multi-interface heterostructure. Interface engineering in such a hierarchical assembly of Fe3O4@C core–shell nanoparticles results in unique performance superiority in terms of microwave absorption compared with traditional carbon-coated Fe3O4 microspheres. The maximum reflection loss value reaches −55.4 dB, and the broad effective absorption bandwidth covers a range as wide as 9.5 GHz (8.5–18 GHz) at only 2.0 mm. Importantly, the confinement effect simultaneously results in strong magnetic coupling interactions and a well-defined charge distribution at the contacted interfaces, which ultimately enhance the magnetic loss and dielectric loss, respectively. Besides, the dielectric carbon shell with optimized thickness facilitates the spread of the magnetic flux line, leading to intensive magnetic–dielectric synergy as well as matched impedance. These results might provide a new insight into the preparation of highly efficient microwave absorbers by optimal microstructure engineering.</description><subject>Absorption</subject><subject>Assembly</subject><subject>Carbon</subject><subject>Charge distribution</subject><subject>Confinement</subject><subject>Core-shell particles</subject><subject>Dielectric loss</subject><subject>Dielectric polarization</subject><subject>Dielectric relaxation</subject><subject>Engineering</subject><subject>Heterostructures</subject><subject>Impedance matching</subject><subject>Interfaces</subject><subject>Iron oxides</subject><subject>Magnetic flux</subject><subject>Microspheres</subject><subject>Microwave absorbers</subject><subject>Microwave absorption</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jUFLAzEUhIMoWGov_oKA59X3stl0c5RitVDoRc_lNfvS3dIma7JV-u9dUJzLDAzzjRD3CI8IpX1qcCBEgIqvxERBBcVcW3P9n-v6VsxyPsCoGsBYOxGXVRg4eXIsOey7wJy6sJddkEPLsu04UXJt5-goKWc-7Y4XGb10lHYxFC4GP24aueRyo2WgEHPfcuIsfUwjsaXgxvrUuRS_6Ysl7XJM_dDFcCduPB0zz_58Kj6WL--Lt2K9eV0tntdFj3U5FBrZKM-OybDRXNmqBAfWWa9RGdSMCpiaBmju0Fh00LB2FnRFDc0VllPx8MvtU_w8cx62h3hOYbzcKlMp0Ai1LX8AYsdg4w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shi, Xiaofeng</creator><creator>Wu, Zhengchen</creator><creator>Liu, Zhengwang</creator><creator>Lv, Jianguo</creator><creator>Zhenfa Zi</creator><creator>Che, Renchao</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2022</creationdate><title>Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption</title><author>Shi, Xiaofeng ; Wu, Zhengchen ; Liu, Zhengwang ; Lv, Jianguo ; Zhenfa Zi ; Che, Renchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-41e62fecea6e64e59530c09c9f412614e120eadd0a7c1691c0de4c9045ada7213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Assembly</topic><topic>Carbon</topic><topic>Charge distribution</topic><topic>Confinement</topic><topic>Core-shell particles</topic><topic>Dielectric loss</topic><topic>Dielectric polarization</topic><topic>Dielectric relaxation</topic><topic>Engineering</topic><topic>Heterostructures</topic><topic>Impedance matching</topic><topic>Interfaces</topic><topic>Iron oxides</topic><topic>Magnetic flux</topic><topic>Microspheres</topic><topic>Microwave absorbers</topic><topic>Microwave absorption</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiaofeng</creatorcontrib><creatorcontrib>Wu, Zhengchen</creatorcontrib><creatorcontrib>Liu, Zhengwang</creatorcontrib><creatorcontrib>Lv, Jianguo</creatorcontrib><creatorcontrib>Zhenfa Zi</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xiaofeng</au><au>Wu, Zhengchen</au><au>Liu, Zhengwang</au><au>Lv, Jianguo</au><au>Zhenfa Zi</au><au>Che, Renchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022</date><risdate>2022</risdate><volume>10</volume><issue>16</issue><spage>8807</spage><epage>8816</epage><pages>8807-8816</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfully fabricated via polydopamine confinement and sequential calcination. In the product, each primary nanoparticle (Fe3O4 microsphere) is confined within a thin layer of carbon, constructing a multi-interface heterostructure. Interface engineering in such a hierarchical assembly of Fe3O4@C core–shell nanoparticles results in unique performance superiority in terms of microwave absorption compared with traditional carbon-coated Fe3O4 microspheres. The maximum reflection loss value reaches −55.4 dB, and the broad effective absorption bandwidth covers a range as wide as 9.5 GHz (8.5–18 GHz) at only 2.0 mm. Importantly, the confinement effect simultaneously results in strong magnetic coupling interactions and a well-defined charge distribution at the contacted interfaces, which ultimately enhance the magnetic loss and dielectric loss, respectively. Besides, the dielectric carbon shell with optimized thickness facilitates the spread of the magnetic flux line, leading to intensive magnetic–dielectric synergy as well as matched impedance. These results might provide a new insight into the preparation of highly efficient microwave absorbers by optimal microstructure engineering.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta11005e</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022, Vol.10 (16), p.8807-8816
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2652041089
source Royal Society of Chemistry
subjects Absorption
Assembly
Carbon
Charge distribution
Confinement
Core-shell particles
Dielectric loss
Dielectric polarization
Dielectric relaxation
Engineering
Heterostructures
Impedance matching
Interfaces
Iron oxides
Magnetic flux
Microspheres
Microwave absorbers
Microwave absorption
Nanoparticles
Nanospheres
title Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20engineering%20in%20the%20hierarchical%20assembly%20of%20carbon-confined%20Fe3O4%20nanospheres%20for%20enhanced%20microwave%20absorption&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shi,%20Xiaofeng&rft.date=2022&rft.volume=10&rft.issue=16&rft.spage=8807&rft.epage=8816&rft.pages=8807-8816&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta11005e&rft_dat=%3Cproquest%3E2652041089%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-41e62fecea6e64e59530c09c9f412614e120eadd0a7c1691c0de4c9045ada7213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2652041089&rft_id=info:pmid/&rfr_iscdi=true