Loading…
Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption
Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfu...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022, Vol.10 (16), p.8807-8816 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8816 |
container_issue | 16 |
container_start_page | 8807 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Shi, Xiaofeng Wu, Zhengchen Liu, Zhengwang Lv, Jianguo Zhenfa Zi Che, Renchao |
description | Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfully fabricated via polydopamine confinement and sequential calcination. In the product, each primary nanoparticle (Fe3O4 microsphere) is confined within a thin layer of carbon, constructing a multi-interface heterostructure. Interface engineering in such a hierarchical assembly of Fe3O4@C core–shell nanoparticles results in unique performance superiority in terms of microwave absorption compared with traditional carbon-coated Fe3O4 microspheres. The maximum reflection loss value reaches −55.4 dB, and the broad effective absorption bandwidth covers a range as wide as 9.5 GHz (8.5–18 GHz) at only 2.0 mm. Importantly, the confinement effect simultaneously results in strong magnetic coupling interactions and a well-defined charge distribution at the contacted interfaces, which ultimately enhance the magnetic loss and dielectric loss, respectively. Besides, the dielectric carbon shell with optimized thickness facilitates the spread of the magnetic flux line, leading to intensive magnetic–dielectric synergy as well as matched impedance. These results might provide a new insight into the preparation of highly efficient microwave absorbers by optimal microstructure engineering. |
doi_str_mv | 10.1039/d1ta11005e |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2652041089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652041089</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-41e62fecea6e64e59530c09c9f412614e120eadd0a7c1691c0de4c9045ada7213</originalsourceid><addsrcrecordid>eNo9jUFLAzEUhIMoWGov_oKA59X3stl0c5RitVDoRc_lNfvS3dIma7JV-u9dUJzLDAzzjRD3CI8IpX1qcCBEgIqvxERBBcVcW3P9n-v6VsxyPsCoGsBYOxGXVRg4eXIsOey7wJy6sJddkEPLsu04UXJt5-goKWc-7Y4XGb10lHYxFC4GP24aueRyo2WgEHPfcuIsfUwjsaXgxvrUuRS_6Ysl7XJM_dDFcCduPB0zz_58Kj6WL--Lt2K9eV0tntdFj3U5FBrZKM-OybDRXNmqBAfWWa9RGdSMCpiaBmju0Fh00LB2FnRFDc0VllPx8MvtU_w8cx62h3hOYbzcKlMp0Ai1LX8AYsdg4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652041089</pqid></control><display><type>article</type><title>Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption</title><source>Royal Society of Chemistry</source><creator>Shi, Xiaofeng ; Wu, Zhengchen ; Liu, Zhengwang ; Lv, Jianguo ; Zhenfa Zi ; Che, Renchao</creator><creatorcontrib>Shi, Xiaofeng ; Wu, Zhengchen ; Liu, Zhengwang ; Lv, Jianguo ; Zhenfa Zi ; Che, Renchao</creatorcontrib><description>Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfully fabricated via polydopamine confinement and sequential calcination. In the product, each primary nanoparticle (Fe3O4 microsphere) is confined within a thin layer of carbon, constructing a multi-interface heterostructure. Interface engineering in such a hierarchical assembly of Fe3O4@C core–shell nanoparticles results in unique performance superiority in terms of microwave absorption compared with traditional carbon-coated Fe3O4 microspheres. The maximum reflection loss value reaches −55.4 dB, and the broad effective absorption bandwidth covers a range as wide as 9.5 GHz (8.5–18 GHz) at only 2.0 mm. Importantly, the confinement effect simultaneously results in strong magnetic coupling interactions and a well-defined charge distribution at the contacted interfaces, which ultimately enhance the magnetic loss and dielectric loss, respectively. Besides, the dielectric carbon shell with optimized thickness facilitates the spread of the magnetic flux line, leading to intensive magnetic–dielectric synergy as well as matched impedance. These results might provide a new insight into the preparation of highly efficient microwave absorbers by optimal microstructure engineering.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta11005e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Assembly ; Carbon ; Charge distribution ; Confinement ; Core-shell particles ; Dielectric loss ; Dielectric polarization ; Dielectric relaxation ; Engineering ; Heterostructures ; Impedance matching ; Interfaces ; Iron oxides ; Magnetic flux ; Microspheres ; Microwave absorbers ; Microwave absorption ; Nanoparticles ; Nanospheres</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022, Vol.10 (16), p.8807-8816</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Shi, Xiaofeng</creatorcontrib><creatorcontrib>Wu, Zhengchen</creatorcontrib><creatorcontrib>Liu, Zhengwang</creatorcontrib><creatorcontrib>Lv, Jianguo</creatorcontrib><creatorcontrib>Zhenfa Zi</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><title>Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfully fabricated via polydopamine confinement and sequential calcination. In the product, each primary nanoparticle (Fe3O4 microsphere) is confined within a thin layer of carbon, constructing a multi-interface heterostructure. Interface engineering in such a hierarchical assembly of Fe3O4@C core–shell nanoparticles results in unique performance superiority in terms of microwave absorption compared with traditional carbon-coated Fe3O4 microspheres. The maximum reflection loss value reaches −55.4 dB, and the broad effective absorption bandwidth covers a range as wide as 9.5 GHz (8.5–18 GHz) at only 2.0 mm. Importantly, the confinement effect simultaneously results in strong magnetic coupling interactions and a well-defined charge distribution at the contacted interfaces, which ultimately enhance the magnetic loss and dielectric loss, respectively. Besides, the dielectric carbon shell with optimized thickness facilitates the spread of the magnetic flux line, leading to intensive magnetic–dielectric synergy as well as matched impedance. These results might provide a new insight into the preparation of highly efficient microwave absorbers by optimal microstructure engineering.</description><subject>Absorption</subject><subject>Assembly</subject><subject>Carbon</subject><subject>Charge distribution</subject><subject>Confinement</subject><subject>Core-shell particles</subject><subject>Dielectric loss</subject><subject>Dielectric polarization</subject><subject>Dielectric relaxation</subject><subject>Engineering</subject><subject>Heterostructures</subject><subject>Impedance matching</subject><subject>Interfaces</subject><subject>Iron oxides</subject><subject>Magnetic flux</subject><subject>Microspheres</subject><subject>Microwave absorbers</subject><subject>Microwave absorption</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jUFLAzEUhIMoWGov_oKA59X3stl0c5RitVDoRc_lNfvS3dIma7JV-u9dUJzLDAzzjRD3CI8IpX1qcCBEgIqvxERBBcVcW3P9n-v6VsxyPsCoGsBYOxGXVRg4eXIsOey7wJy6sJddkEPLsu04UXJt5-goKWc-7Y4XGb10lHYxFC4GP24aueRyo2WgEHPfcuIsfUwjsaXgxvrUuRS_6Ysl7XJM_dDFcCduPB0zz_58Kj6WL--Lt2K9eV0tntdFj3U5FBrZKM-OybDRXNmqBAfWWa9RGdSMCpiaBmju0Fh00LB2FnRFDc0VllPx8MvtU_w8cx62h3hOYbzcKlMp0Ai1LX8AYsdg4w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shi, Xiaofeng</creator><creator>Wu, Zhengchen</creator><creator>Liu, Zhengwang</creator><creator>Lv, Jianguo</creator><creator>Zhenfa Zi</creator><creator>Che, Renchao</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2022</creationdate><title>Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption</title><author>Shi, Xiaofeng ; Wu, Zhengchen ; Liu, Zhengwang ; Lv, Jianguo ; Zhenfa Zi ; Che, Renchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-41e62fecea6e64e59530c09c9f412614e120eadd0a7c1691c0de4c9045ada7213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Assembly</topic><topic>Carbon</topic><topic>Charge distribution</topic><topic>Confinement</topic><topic>Core-shell particles</topic><topic>Dielectric loss</topic><topic>Dielectric polarization</topic><topic>Dielectric relaxation</topic><topic>Engineering</topic><topic>Heterostructures</topic><topic>Impedance matching</topic><topic>Interfaces</topic><topic>Iron oxides</topic><topic>Magnetic flux</topic><topic>Microspheres</topic><topic>Microwave absorbers</topic><topic>Microwave absorption</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiaofeng</creatorcontrib><creatorcontrib>Wu, Zhengchen</creatorcontrib><creatorcontrib>Liu, Zhengwang</creatorcontrib><creatorcontrib>Lv, Jianguo</creatorcontrib><creatorcontrib>Zhenfa Zi</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xiaofeng</au><au>Wu, Zhengchen</au><au>Liu, Zhengwang</au><au>Lv, Jianguo</au><au>Zhenfa Zi</au><au>Che, Renchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022</date><risdate>2022</risdate><volume>10</volume><issue>16</issue><spage>8807</spage><epage>8816</epage><pages>8807-8816</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Heterointerfaces can induce dielectric polarization relaxation to remarkably boost microwave absorption performance. However, delicately engineering a homogeneous magnetic–dielectric heterostructure remains a considerable challenge. Herein, novel hierarchical Fe3O4@C microspheres have been successfully fabricated via polydopamine confinement and sequential calcination. In the product, each primary nanoparticle (Fe3O4 microsphere) is confined within a thin layer of carbon, constructing a multi-interface heterostructure. Interface engineering in such a hierarchical assembly of Fe3O4@C core–shell nanoparticles results in unique performance superiority in terms of microwave absorption compared with traditional carbon-coated Fe3O4 microspheres. The maximum reflection loss value reaches −55.4 dB, and the broad effective absorption bandwidth covers a range as wide as 9.5 GHz (8.5–18 GHz) at only 2.0 mm. Importantly, the confinement effect simultaneously results in strong magnetic coupling interactions and a well-defined charge distribution at the contacted interfaces, which ultimately enhance the magnetic loss and dielectric loss, respectively. Besides, the dielectric carbon shell with optimized thickness facilitates the spread of the magnetic flux line, leading to intensive magnetic–dielectric synergy as well as matched impedance. These results might provide a new insight into the preparation of highly efficient microwave absorbers by optimal microstructure engineering.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta11005e</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022, Vol.10 (16), p.8807-8816 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2652041089 |
source | Royal Society of Chemistry |
subjects | Absorption Assembly Carbon Charge distribution Confinement Core-shell particles Dielectric loss Dielectric polarization Dielectric relaxation Engineering Heterostructures Impedance matching Interfaces Iron oxides Magnetic flux Microspheres Microwave absorbers Microwave absorption Nanoparticles Nanospheres |
title | Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20engineering%20in%20the%20hierarchical%20assembly%20of%20carbon-confined%20Fe3O4%20nanospheres%20for%20enhanced%20microwave%20absorption&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shi,%20Xiaofeng&rft.date=2022&rft.volume=10&rft.issue=16&rft.spage=8807&rft.epage=8816&rft.pages=8807-8816&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta11005e&rft_dat=%3Cproquest%3E2652041089%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-41e62fecea6e64e59530c09c9f412614e120eadd0a7c1691c0de4c9045ada7213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2652041089&rft_id=info:pmid/&rfr_iscdi=true |