Loading…

Bi-regularization enhanced azimuthal mode analysis method for the aero-engine fan

Azimuthal mode analysis is regarded as an effective tool for aero-engine flow field investigation, where numerous microphones are evenly mounted as a ring to provide sufficient spatial resolution for azimuthal pressure acquisition. The current compressive sampling method enables azimuthal modes to b...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2022-05, Vol.171, p.108921, Article 108921
Main Authors: Li, Zepeng, Qiao, Baijie, Wen, Bi, Liu, Junjiang, Chen, Xuefeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Azimuthal mode analysis is regarded as an effective tool for aero-engine flow field investigation, where numerous microphones are evenly mounted as a ring to provide sufficient spatial resolution for azimuthal pressure acquisition. The current compressive sampling method enables azimuthal modes to be obtained from much fewer microphones, with dominant and non-dominant modes separately estimated by L1-norm regularization and spatial Fourier transform or least square method. Despite the effort of measurement system simplification, this classical compressive sampling method regularized by L1-norm inherently introduces accuracy loss in amplitude estimation for both dominant and non-dominant modes. With the aim of accuracy promotion and further measurement reduction, the Bi-regularization enhanced azimuthal mode analysis (BRAMA) method is devised to investigate the azimuthal modes of the aero-engine fan via limited acoustic measurements. The BRAMA method substitutes L1-norm regularization with Lp-norm (0
ISSN:0888-3270
1096-1216
DOI:10.1016/j.ymssp.2022.108921