Loading…

Zein and lignin-based nanoparticles as soybean seed treatment: translocation and impact on seed and plant health

Zein nanoparticles (ZNPs) were synthesized with a cationic surfactant, didodecyldimethylammonium bromide (122.9 ± 0.8 nm, + 59.7 ± 4.4 mV) and a non-ionic surfactant, Tween 80 (118.7 ± 1.7 nm, + 26.4 ± 1.1 mV). Lignin-graft-poly(lactic- co -glycolic) acid nanoparticles (LNPs) were made without surfa...

Full description

Saved in:
Bibliographic Details
Published in:Applied nanoscience 2022-05, Vol.12 (5), p.1557-1569
Main Authors: Kacsó, Tímea, Hanna, Eban A., Salinas, Fallon, Astete, Carlos E., Bodoki, Ede, Oprean, Radu, Price, Paul P., Doyle, Vinson P., Bonser, Colin A. R., Davis, Jeffrey A., Sabliov, Cristina M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zein nanoparticles (ZNPs) were synthesized with a cationic surfactant, didodecyldimethylammonium bromide (122.9 ± 0.8 nm, + 59.7 ± 4.4 mV) and a non-ionic surfactant, Tween 80 (118.7 ± 1.7 nm, + 26.4 ± 1.1 mV). Lignin-graft-poly(lactic- co -glycolic) acid nanoparticles (LNPs) were made without surfactants (52.9 ± 0.2 nm, − 54.9 ± 0.5 mV). Both samples were applied as antifungal seed treatments on soybeans, and their impact on germination and plant health was assessed. Treated seeds showed high germination rates (> 90% for all treatment groups), similar to the control group (100%). Root and stem lengths and the dry biomass of treated seeds were not statistically distinguishable from the control. Foliage from seed-treated plants was fed to larvae of Chrysodeixis includens with no differences in mortality between treatments. No translocation of fluorescently tagged particles was observed with fluorescence microscopy following seed treatment and germination. Nano-delivered azoxystrobin provided ~ 100% protection when LNPs were used. Results suggest ZNPs and LNPs are safe and effective delivery systems of active compounds for seed treatments.
ISSN:2190-5509
2190-5517
DOI:10.1007/s13204-021-02307-3