Loading…
Transfer Learning based Performance Comparison of the Pre-Trained Deep Neural Networks
Deep learning has grown tremendously in recent years, having a substantial impact on practically every discipline. Transfer learning allows us to transfer the knowledge of a model that has been formerly trained for a particular task to a new model that is attempting to solve a related but not identi...
Saved in:
Published in: | International journal of advanced computer science & applications 2022, Vol.13 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep learning has grown tremendously in recent years, having a substantial impact on practically every discipline. Transfer learning allows us to transfer the knowledge of a model that has been formerly trained for a particular task to a new model that is attempting to solve a related but not identical problem. Specific layers of a pre-trained model must be retrained while the others must remain unmodified to adapt it to a new task effectively. There are typical issues in selecting the layers to be enabled for training and layers to be frozen, setting hyper-parameter values, and all these concerns have a substantial effect on training capabilities as well as classification performance. The principal aim of this study is to compare the network performance of the selected pre-trained models based on transfer learning to help the selection of a suitable model for image classifica-tion. To accomplish the goal, we examined the performance of five pre-trained networks, such as SqueezeNet, GoogleNet, ShuffleNet, Darknet-53, and Inception-V3 with different Epochs, Learning Rates, and Mini-Batch Sizes to compare and evaluate the network’s performance using confusion matrix. Based on the experimental findings, Inception-V3 has achieved the highest accuracy of 96.98%, as well as other evaluation metrics, including precision, sensitivity, specificity, and f1-score of 92.63%, 92.46%, 98.12%, and 92.49%, respectively. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2022.0130193 |