Loading…

Recent advances in metastable alloys for hydrogen storage: a review

Development of new materials with high hydrogen storage capacity and reversible hydrogen sorption performances under mild conditions has very high value in both fundamental and application aspects. In the past years, some new systems with metastable structures, such as ultra-fine nanocrystalline all...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2022-06, Vol.41 (6), p.1797-1817
Main Authors: Lin, Huai-Jun, Lu, Yan-Shan, Zhang, Liu-Ting, Liu, Hai-Zhen, Edalati, Kaveh, Révész, Ádám
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Development of new materials with high hydrogen storage capacity and reversible hydrogen sorption performances under mild conditions has very high value in both fundamental and application aspects. In the past years, some new systems with metastable structures, such as ultra-fine nanocrystalline alloys, amorphous alloys, nanoglass alloys, immiscible alloys, high-entropy alloys, have been abundantly studied as hydrogen storage materials. Many new hydrogen storage properties either from the kinetics or thermodynamics aspects have been reported. In this review, recent advances of studies on metastable alloys for hydrogen storage applications have been comprehensively reviewed. The materials preparation methods to synthesize metastable hydrogen storage alloys are firstly reviewed. Afterwards, hydrogen storage properties of the metastable alloys are summarized and discussed, focusing on the unique kinetics and thermodynamics properties by forming of such unique metastable structures. For examples, superior hydrogenation kinetics and higher hydrogen storage capacity have been achieved in Mg-based amorphous and nanoglass alloys. Destabilized thermodynamics properties can be obtained in the immiscible Mg–Mn and Mg–Zr alloys. In addition to highlighting the recent achievements of metastable alloys in the field of hydrogen storage, the remaining challenges and trends of the emerging research are also discussed. Graphical abstract
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-021-01917-8