Loading…

2LaCo0.7Fe0.3O3/N-doped carbon bifunctional electrocatalyst derived from g-C3N4 nanosheets for zinc-air battery

•LCFO/xNC hybrids are prepared using CNNS as carbon and nitrogen source.•The high dispersion of perovskite on the NC substrate exposes more active sites.•2LCFO/NC has high concentration of oxygen vacancies to promote the adsorption.•The enhancement Co-O covalency is beneficial to the electrocatalyti...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2022-05, Vol.414, p.140211, Article 140211
Main Authors: Liu, Haoquan, Ren, Xinghui, Bai, Haoyang, Qiao, Huici, Lu, Jinwei, Wang, Xuefei, Huang, Hao, Hu, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-aa39bbaf240bb531158e7746b531a0ac38300761b5bc565776491a734b899f383
cites cdi_FETCH-LOGICAL-c343t-aa39bbaf240bb531158e7746b531a0ac38300761b5bc565776491a734b899f383
container_end_page
container_issue
container_start_page 140211
container_title Electrochimica acta
container_volume 414
creator Liu, Haoquan
Ren, Xinghui
Bai, Haoyang
Qiao, Huici
Lu, Jinwei
Wang, Xuefei
Huang, Hao
Hu, Jie
description •LCFO/xNC hybrids are prepared using CNNS as carbon and nitrogen source.•The high dispersion of perovskite on the NC substrate exposes more active sites.•2LCFO/NC has high concentration of oxygen vacancies to promote the adsorption.•The enhancement Co-O covalency is beneficial to the electrocatalytic process.•The reduction of RDS free energy change accelerate the reaction process. Perovskite oxides have been widely studied as one of the excellent bifunctional oxygen electrocatalysts (ORR: Oxygen Reduction Reaction, OER: Oxygen Evolution Reaction) due to its flexible crystal structure and low cost. Herein, 2LaCo0.7Fe0.3O3/N-doped carbon is prepared by sol-gel method using g-C3N4 nanosheets as carbon source and nitrogen source. The LaCo0.7Fe0.3O3 nanoparticles have excellent dispersibility on the N-doped carbon substrate and the composite material has higher oxygen vacancy concentration, showing enhanced bifunctional electrocatalytic activity (△E=Ej=10,OER-E1/2,ORR=1.03 V) compared with the original LaCo0.7Fe0.3O3 (△E = 1.12 V). Moreover, 2LaCo0.7Fe0.3O3/N-doped carbon-based Zn-air battery presents excellent cycling stability (over 24 h) and high peak power density of 116 mW cm−2. Density functional theory (DFT) calculations revealed the mechanism of improvement electrocatalytic activity of 2LaCo0.7Fe0.3O3/N-doped carbon, which comes from the regulated electronic structure, including enhanced conductivity and the covalence of Co-O bond, reducing the free energy change of rate-determining step. This study provides a novel strategy for the design and prepare perovskite-type bifunctional electrocatalysts. Multi-factor optimization in 2LaCo0.7Fe0.3O3/N-doped carbon, including high oxygen vacancy concentration, improved conductivity and the covalence Co-O bond, and reducing the free energy change of rate-determining step. [Display omitted]
doi_str_mv 10.1016/j.electacta.2022.140211
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2654390816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468622003826</els_id><sourcerecordid>2654390816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-aa39bbaf240bb531158e7746b531a0ac38300761b5bc565776491a734b899f383</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxoMoOKd_gwGf2yVNmrSPYzgVxvaiz-GSpprSNTPJBvOvt3Piq3BwB_d9d3w_hO4pySmhYtbltrcmwVh5QYoip5wUlF6gCa0ky1hV1pdoQghlGReVuEY3MXaEECkkmSBfrGDhSS6XluRsw2brrPE722ADQfsBa9fuB5OcH6DHP4-CN5CgP8aEGxvcYdS2wW_xe7Zga44HGHz8sDZF3PqAv9xgMnABa0jJhuMtumqhj_but0_R2_LxdfGcrTZPL4v5KjOMs5QBsFpraAtOtC4ZpWVlpeTiNAMBwyp2SkB1qU0pSikFrylIxnVV1-24naKH891d8J97G5Pq_D6MIaIqRMlZTSoqRpU8q0zwMQbbql1wWwhHRYk60VWd-qOrTnTVme7onJ-ddgxxcDaoaJwdjG1cGPWq8e7fG9-c54VI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654390816</pqid></control><display><type>article</type><title>2LaCo0.7Fe0.3O3/N-doped carbon bifunctional electrocatalyst derived from g-C3N4 nanosheets for zinc-air battery</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Haoquan ; Ren, Xinghui ; Bai, Haoyang ; Qiao, Huici ; Lu, Jinwei ; Wang, Xuefei ; Huang, Hao ; Hu, Jie</creator><creatorcontrib>Liu, Haoquan ; Ren, Xinghui ; Bai, Haoyang ; Qiao, Huici ; Lu, Jinwei ; Wang, Xuefei ; Huang, Hao ; Hu, Jie</creatorcontrib><description>•LCFO/xNC hybrids are prepared using CNNS as carbon and nitrogen source.•The high dispersion of perovskite on the NC substrate exposes more active sites.•2LCFO/NC has high concentration of oxygen vacancies to promote the adsorption.•The enhancement Co-O covalency is beneficial to the electrocatalytic process.•The reduction of RDS free energy change accelerate the reaction process. Perovskite oxides have been widely studied as one of the excellent bifunctional oxygen electrocatalysts (ORR: Oxygen Reduction Reaction, OER: Oxygen Evolution Reaction) due to its flexible crystal structure and low cost. Herein, 2LaCo0.7Fe0.3O3/N-doped carbon is prepared by sol-gel method using g-C3N4 nanosheets as carbon source and nitrogen source. The LaCo0.7Fe0.3O3 nanoparticles have excellent dispersibility on the N-doped carbon substrate and the composite material has higher oxygen vacancy concentration, showing enhanced bifunctional electrocatalytic activity (△E=Ej=10,OER-E1/2,ORR=1.03 V) compared with the original LaCo0.7Fe0.3O3 (△E = 1.12 V). Moreover, 2LaCo0.7Fe0.3O3/N-doped carbon-based Zn-air battery presents excellent cycling stability (over 24 h) and high peak power density of 116 mW cm−2. Density functional theory (DFT) calculations revealed the mechanism of improvement electrocatalytic activity of 2LaCo0.7Fe0.3O3/N-doped carbon, which comes from the regulated electronic structure, including enhanced conductivity and the covalence of Co-O bond, reducing the free energy change of rate-determining step. This study provides a novel strategy for the design and prepare perovskite-type bifunctional electrocatalysts. Multi-factor optimization in 2LaCo0.7Fe0.3O3/N-doped carbon, including high oxygen vacancy concentration, improved conductivity and the covalence Co-O bond, and reducing the free energy change of rate-determining step. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2022.140211</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon ; Carbon nitride ; Chemical reduction ; Composite materials ; Crystal structure ; Density functional theory ; DFT calculation ; Electrocatalyst ; Electrocatalysts ; Electronic structure ; Free energy ; Metal air batteries ; N-doped carbon ; Nanoparticles ; Nanosheets ; Nitrogen ; Oxygen evolution reactions ; Oxygen reduction reactions ; Perovskite ; Perovskites ; Sol-gel processes ; Substrates ; Zinc-oxygen batteries ; Zn-air battery</subject><ispartof>Electrochimica acta, 2022-05, Vol.414, p.140211, Article 140211</ispartof><rights>2022</rights><rights>Copyright Elsevier BV May 10, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-aa39bbaf240bb531158e7746b531a0ac38300761b5bc565776491a734b899f383</citedby><cites>FETCH-LOGICAL-c343t-aa39bbaf240bb531158e7746b531a0ac38300761b5bc565776491a734b899f383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Haoquan</creatorcontrib><creatorcontrib>Ren, Xinghui</creatorcontrib><creatorcontrib>Bai, Haoyang</creatorcontrib><creatorcontrib>Qiao, Huici</creatorcontrib><creatorcontrib>Lu, Jinwei</creatorcontrib><creatorcontrib>Wang, Xuefei</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><title>2LaCo0.7Fe0.3O3/N-doped carbon bifunctional electrocatalyst derived from g-C3N4 nanosheets for zinc-air battery</title><title>Electrochimica acta</title><description>•LCFO/xNC hybrids are prepared using CNNS as carbon and nitrogen source.•The high dispersion of perovskite on the NC substrate exposes more active sites.•2LCFO/NC has high concentration of oxygen vacancies to promote the adsorption.•The enhancement Co-O covalency is beneficial to the electrocatalytic process.•The reduction of RDS free energy change accelerate the reaction process. Perovskite oxides have been widely studied as one of the excellent bifunctional oxygen electrocatalysts (ORR: Oxygen Reduction Reaction, OER: Oxygen Evolution Reaction) due to its flexible crystal structure and low cost. Herein, 2LaCo0.7Fe0.3O3/N-doped carbon is prepared by sol-gel method using g-C3N4 nanosheets as carbon source and nitrogen source. The LaCo0.7Fe0.3O3 nanoparticles have excellent dispersibility on the N-doped carbon substrate and the composite material has higher oxygen vacancy concentration, showing enhanced bifunctional electrocatalytic activity (△E=Ej=10,OER-E1/2,ORR=1.03 V) compared with the original LaCo0.7Fe0.3O3 (△E = 1.12 V). Moreover, 2LaCo0.7Fe0.3O3/N-doped carbon-based Zn-air battery presents excellent cycling stability (over 24 h) and high peak power density of 116 mW cm−2. Density functional theory (DFT) calculations revealed the mechanism of improvement electrocatalytic activity of 2LaCo0.7Fe0.3O3/N-doped carbon, which comes from the regulated electronic structure, including enhanced conductivity and the covalence of Co-O bond, reducing the free energy change of rate-determining step. This study provides a novel strategy for the design and prepare perovskite-type bifunctional electrocatalysts. Multi-factor optimization in 2LaCo0.7Fe0.3O3/N-doped carbon, including high oxygen vacancy concentration, improved conductivity and the covalence Co-O bond, and reducing the free energy change of rate-determining step. [Display omitted]</description><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Chemical reduction</subject><subject>Composite materials</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>DFT calculation</subject><subject>Electrocatalyst</subject><subject>Electrocatalysts</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Metal air batteries</subject><subject>N-doped carbon</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Nitrogen</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Sol-gel processes</subject><subject>Substrates</subject><subject>Zinc-oxygen batteries</subject><subject>Zn-air battery</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQxoMoOKd_gwGf2yVNmrSPYzgVxvaiz-GSpprSNTPJBvOvt3Piq3BwB_d9d3w_hO4pySmhYtbltrcmwVh5QYoip5wUlF6gCa0ky1hV1pdoQghlGReVuEY3MXaEECkkmSBfrGDhSS6XluRsw2brrPE722ADQfsBa9fuB5OcH6DHP4-CN5CgP8aEGxvcYdS2wW_xe7Zga44HGHz8sDZF3PqAv9xgMnABa0jJhuMtumqhj_but0_R2_LxdfGcrTZPL4v5KjOMs5QBsFpraAtOtC4ZpWVlpeTiNAMBwyp2SkB1qU0pSikFrylIxnVV1-24naKH891d8J97G5Pq_D6MIaIqRMlZTSoqRpU8q0zwMQbbql1wWwhHRYk60VWd-qOrTnTVme7onJ-ddgxxcDaoaJwdjG1cGPWq8e7fG9-c54VI</recordid><startdate>20220510</startdate><enddate>20220510</enddate><creator>Liu, Haoquan</creator><creator>Ren, Xinghui</creator><creator>Bai, Haoyang</creator><creator>Qiao, Huici</creator><creator>Lu, Jinwei</creator><creator>Wang, Xuefei</creator><creator>Huang, Hao</creator><creator>Hu, Jie</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220510</creationdate><title>2LaCo0.7Fe0.3O3/N-doped carbon bifunctional electrocatalyst derived from g-C3N4 nanosheets for zinc-air battery</title><author>Liu, Haoquan ; Ren, Xinghui ; Bai, Haoyang ; Qiao, Huici ; Lu, Jinwei ; Wang, Xuefei ; Huang, Hao ; Hu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-aa39bbaf240bb531158e7746b531a0ac38300761b5bc565776491a734b899f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Chemical reduction</topic><topic>Composite materials</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>DFT calculation</topic><topic>Electrocatalyst</topic><topic>Electrocatalysts</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Metal air batteries</topic><topic>N-doped carbon</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Nitrogen</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Sol-gel processes</topic><topic>Substrates</topic><topic>Zinc-oxygen batteries</topic><topic>Zn-air battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haoquan</creatorcontrib><creatorcontrib>Ren, Xinghui</creatorcontrib><creatorcontrib>Bai, Haoyang</creatorcontrib><creatorcontrib>Qiao, Huici</creatorcontrib><creatorcontrib>Lu, Jinwei</creatorcontrib><creatorcontrib>Wang, Xuefei</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haoquan</au><au>Ren, Xinghui</au><au>Bai, Haoyang</au><au>Qiao, Huici</au><au>Lu, Jinwei</au><au>Wang, Xuefei</au><au>Huang, Hao</au><au>Hu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2LaCo0.7Fe0.3O3/N-doped carbon bifunctional electrocatalyst derived from g-C3N4 nanosheets for zinc-air battery</atitle><jtitle>Electrochimica acta</jtitle><date>2022-05-10</date><risdate>2022</risdate><volume>414</volume><spage>140211</spage><pages>140211-</pages><artnum>140211</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•LCFO/xNC hybrids are prepared using CNNS as carbon and nitrogen source.•The high dispersion of perovskite on the NC substrate exposes more active sites.•2LCFO/NC has high concentration of oxygen vacancies to promote the adsorption.•The enhancement Co-O covalency is beneficial to the electrocatalytic process.•The reduction of RDS free energy change accelerate the reaction process. Perovskite oxides have been widely studied as one of the excellent bifunctional oxygen electrocatalysts (ORR: Oxygen Reduction Reaction, OER: Oxygen Evolution Reaction) due to its flexible crystal structure and low cost. Herein, 2LaCo0.7Fe0.3O3/N-doped carbon is prepared by sol-gel method using g-C3N4 nanosheets as carbon source and nitrogen source. The LaCo0.7Fe0.3O3 nanoparticles have excellent dispersibility on the N-doped carbon substrate and the composite material has higher oxygen vacancy concentration, showing enhanced bifunctional electrocatalytic activity (△E=Ej=10,OER-E1/2,ORR=1.03 V) compared with the original LaCo0.7Fe0.3O3 (△E = 1.12 V). Moreover, 2LaCo0.7Fe0.3O3/N-doped carbon-based Zn-air battery presents excellent cycling stability (over 24 h) and high peak power density of 116 mW cm−2. Density functional theory (DFT) calculations revealed the mechanism of improvement electrocatalytic activity of 2LaCo0.7Fe0.3O3/N-doped carbon, which comes from the regulated electronic structure, including enhanced conductivity and the covalence of Co-O bond, reducing the free energy change of rate-determining step. This study provides a novel strategy for the design and prepare perovskite-type bifunctional electrocatalysts. Multi-factor optimization in 2LaCo0.7Fe0.3O3/N-doped carbon, including high oxygen vacancy concentration, improved conductivity and the covalence Co-O bond, and reducing the free energy change of rate-determining step. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2022.140211</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2022-05, Vol.414, p.140211, Article 140211
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2654390816
source ScienceDirect Freedom Collection 2022-2024
subjects Carbon
Carbon nitride
Chemical reduction
Composite materials
Crystal structure
Density functional theory
DFT calculation
Electrocatalyst
Electrocatalysts
Electronic structure
Free energy
Metal air batteries
N-doped carbon
Nanoparticles
Nanosheets
Nitrogen
Oxygen evolution reactions
Oxygen reduction reactions
Perovskite
Perovskites
Sol-gel processes
Substrates
Zinc-oxygen batteries
Zn-air battery
title 2LaCo0.7Fe0.3O3/N-doped carbon bifunctional electrocatalyst derived from g-C3N4 nanosheets for zinc-air battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2LaCo0.7Fe0.3O3/N-doped%20carbon%20bifunctional%20electrocatalyst%20derived%20from%20g-C3N4%20nanosheets%20for%20zinc-air%20battery&rft.jtitle=Electrochimica%20acta&rft.au=Liu,%20Haoquan&rft.date=2022-05-10&rft.volume=414&rft.spage=140211&rft.pages=140211-&rft.artnum=140211&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2022.140211&rft_dat=%3Cproquest_cross%3E2654390816%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-aa39bbaf240bb531158e7746b531a0ac38300761b5bc565776491a734b899f383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2654390816&rft_id=info:pmid/&rfr_iscdi=true