Loading…
Investigating the recoverable robust single machine scheduling problem under interval uncertainty
We investigate the recoverable robust single machine scheduling problem under interval uncertainty. In this setting, jobs have first-stage processing times p and second-stage processing times q and we aim to find a first-stage and second-stage schedule with a minimum combined sum of completion times...
Saved in:
Published in: | Discrete Applied Mathematics 2022-05, Vol.313, p.99-114 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-a3136f197b822fab0c55bd35177c764f418168a2d375d6be170b700c2e1f17b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-a3136f197b822fab0c55bd35177c764f418168a2d375d6be170b700c2e1f17b53 |
container_end_page | 114 |
container_issue | |
container_start_page | 99 |
container_title | Discrete Applied Mathematics |
container_volume | 313 |
creator | Bold, Matthew Goerigk, Marc |
description | We investigate the recoverable robust single machine scheduling problem under interval uncertainty. In this setting, jobs have first-stage processing times p and second-stage processing times q and we aim to find a first-stage and second-stage schedule with a minimum combined sum of completion times, such that at least Δ jobs share the same position in both schedules.
We provide positive complexity results for some important special cases of this problem, as well as derive a 2-approximation algorithm to the full problem. Computational experiments examine the performance of an exact mixed-integer programming formulation and the approximation algorithm, and demonstrate the strength of a proposed polynomial time greedy heuristic. |
doi_str_mv | 10.1016/j.dam.2022.02.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2654393217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X22000427</els_id><sourcerecordid>2654393217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a3136f197b822fab0c55bd35177c764f418168a2d375d6be170b700c2e1f17b53</originalsourceid><addsrcrecordid>eNp9UE1Lw0AQXUTBWv0B3gKeE3c2zW6KJyl-FApeFLwtm82k3ZCPupsE-u-dUM_CwMxj3puPx9g98AQ4yMc6KU2bCC5Ewil4dsEWkCsRS6Xgki2II2MB-fc1uwmh5pwDoQUz227CMLi9GVy3j4YDRh5tP6E3RUN1X4xhiAL1CLXGHlyHUbAHLMdmFhyJ0WAbjV2JPnLdgH4yDUGLfjCET7fsqjJNwLu_vGRfry-fm_d49_G23TzvYpvKfIhNCqmsYK2KXIjKFNxmWVGmGShllVxVK8hB5kaUqcpKWSAoXijOrUCoQBVZumQP57l00s9IP-m6H31HK7WQ2SpdpwIUseDMsr4PwWOlj961xp80cD07qWtNTurZSc0p-Dz56axBOn9y6HWwDunD0pFXgy5794_6F9I5fOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654393217</pqid></control><display><type>article</type><title>Investigating the recoverable robust single machine scheduling problem under interval uncertainty</title><source>Elsevier</source><creator>Bold, Matthew ; Goerigk, Marc</creator><creatorcontrib>Bold, Matthew ; Goerigk, Marc</creatorcontrib><description>We investigate the recoverable robust single machine scheduling problem under interval uncertainty. In this setting, jobs have first-stage processing times p and second-stage processing times q and we aim to find a first-stage and second-stage schedule with a minimum combined sum of completion times, such that at least Δ jobs share the same position in both schedules.
We provide positive complexity results for some important special cases of this problem, as well as derive a 2-approximation algorithm to the full problem. Computational experiments examine the performance of an exact mixed-integer programming formulation and the approximation algorithm, and demonstrate the strength of a proposed polynomial time greedy heuristic.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2022.02.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Approximation ; Integer programming ; Job shops ; Mathematical analysis ; Mixed integer ; Optimisation under uncertainty ; Polynomials ; Recoverable robustness ; Robustness ; Schedules ; Scheduling ; Uncertainty</subject><ispartof>Discrete Applied Mathematics, 2022-05, Vol.313, p.99-114</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV May 31, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a3136f197b822fab0c55bd35177c764f418168a2d375d6be170b700c2e1f17b53</citedby><cites>FETCH-LOGICAL-c368t-a3136f197b822fab0c55bd35177c764f418168a2d375d6be170b700c2e1f17b53</cites><orcidid>0000-0002-2516-0129 ; 0000-0003-2200-796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bold, Matthew</creatorcontrib><creatorcontrib>Goerigk, Marc</creatorcontrib><title>Investigating the recoverable robust single machine scheduling problem under interval uncertainty</title><title>Discrete Applied Mathematics</title><description>We investigate the recoverable robust single machine scheduling problem under interval uncertainty. In this setting, jobs have first-stage processing times p and second-stage processing times q and we aim to find a first-stage and second-stage schedule with a minimum combined sum of completion times, such that at least Δ jobs share the same position in both schedules.
We provide positive complexity results for some important special cases of this problem, as well as derive a 2-approximation algorithm to the full problem. Computational experiments examine the performance of an exact mixed-integer programming formulation and the approximation algorithm, and demonstrate the strength of a proposed polynomial time greedy heuristic.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Integer programming</subject><subject>Job shops</subject><subject>Mathematical analysis</subject><subject>Mixed integer</subject><subject>Optimisation under uncertainty</subject><subject>Polynomials</subject><subject>Recoverable robustness</subject><subject>Robustness</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Uncertainty</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AQXUTBWv0B3gKeE3c2zW6KJyl-FApeFLwtm82k3ZCPupsE-u-dUM_CwMxj3puPx9g98AQ4yMc6KU2bCC5Ewil4dsEWkCsRS6Xgki2II2MB-fc1uwmh5pwDoQUz227CMLi9GVy3j4YDRh5tP6E3RUN1X4xhiAL1CLXGHlyHUbAHLMdmFhyJ0WAbjV2JPnLdgH4yDUGLfjCET7fsqjJNwLu_vGRfry-fm_d49_G23TzvYpvKfIhNCqmsYK2KXIjKFNxmWVGmGShllVxVK8hB5kaUqcpKWSAoXijOrUCoQBVZumQP57l00s9IP-m6H31HK7WQ2SpdpwIUseDMsr4PwWOlj961xp80cD07qWtNTurZSc0p-Dz56axBOn9y6HWwDunD0pFXgy5794_6F9I5fOg</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Bold, Matthew</creator><creator>Goerigk, Marc</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2516-0129</orcidid><orcidid>https://orcid.org/0000-0003-2200-796X</orcidid></search><sort><creationdate>20220531</creationdate><title>Investigating the recoverable robust single machine scheduling problem under interval uncertainty</title><author>Bold, Matthew ; Goerigk, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a3136f197b822fab0c55bd35177c764f418168a2d375d6be170b700c2e1f17b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Integer programming</topic><topic>Job shops</topic><topic>Mathematical analysis</topic><topic>Mixed integer</topic><topic>Optimisation under uncertainty</topic><topic>Polynomials</topic><topic>Recoverable robustness</topic><topic>Robustness</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bold, Matthew</creatorcontrib><creatorcontrib>Goerigk, Marc</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bold, Matthew</au><au>Goerigk, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the recoverable robust single machine scheduling problem under interval uncertainty</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>313</volume><spage>99</spage><epage>114</epage><pages>99-114</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We investigate the recoverable robust single machine scheduling problem under interval uncertainty. In this setting, jobs have first-stage processing times p and second-stage processing times q and we aim to find a first-stage and second-stage schedule with a minimum combined sum of completion times, such that at least Δ jobs share the same position in both schedules.
We provide positive complexity results for some important special cases of this problem, as well as derive a 2-approximation algorithm to the full problem. Computational experiments examine the performance of an exact mixed-integer programming formulation and the approximation algorithm, and demonstrate the strength of a proposed polynomial time greedy heuristic.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2022.02.005</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2516-0129</orcidid><orcidid>https://orcid.org/0000-0003-2200-796X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2022-05, Vol.313, p.99-114 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2654393217 |
source | Elsevier |
subjects | Algorithms Approximation Integer programming Job shops Mathematical analysis Mixed integer Optimisation under uncertainty Polynomials Recoverable robustness Robustness Schedules Scheduling Uncertainty |
title | Investigating the recoverable robust single machine scheduling problem under interval uncertainty |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20recoverable%20robust%20single%20machine%20scheduling%20problem%20under%20interval%20uncertainty&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Bold,%20Matthew&rft.date=2022-05-31&rft.volume=313&rft.spage=99&rft.epage=114&rft.pages=99-114&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2022.02.005&rft_dat=%3Cproquest_cross%3E2654393217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-a3136f197b822fab0c55bd35177c764f418168a2d375d6be170b700c2e1f17b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2654393217&rft_id=info:pmid/&rfr_iscdi=true |