Loading…
Forecasting El Niño and La Niña events using decision tree classifier
The El Niño-Southern Oscillation (ENSO) phenomenon affects the global climate by changing temperature and precipitation patterns mainly in tropical climatic regions and median latitudes. Such event strongly influences agricultural activities and crop yields. The Niño Oceanic Index (ONI) of the US Na...
Saved in:
Published in: | Theoretical and applied climatology 2022-05, Vol.148 (3-4), p.1279-1288 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-72be76130b68fde29e1f41a7667fb3fa7d7db5d5338d82142858ec9601e9949b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-72be76130b68fde29e1f41a7667fb3fa7d7db5d5338d82142858ec9601e9949b3 |
container_end_page | 1288 |
container_issue | 3-4 |
container_start_page | 1279 |
container_title | Theoretical and applied climatology |
container_volume | 148 |
creator | Silva, Karita Almeida de Souza Rolim, Glauco de Oliveira Aparecido, Lucas Eduardo |
description | The El Niño-Southern Oscillation (ENSO) phenomenon affects the global climate by changing temperature and precipitation patterns mainly in tropical climatic regions and median latitudes. Such event strongly influences agricultural activities and crop yields. The Niño Oceanic Index (ONI) of the US National Oceanic and Atmospheric Administration (NOAA) describes and monitors ENSO intensity from ocean temperature measurements. When ONI in the Niño 3.4 region was + 0.5 °C above normal or − 0.5 °C below normal for 5 consecutive 3-month running averages, El Niño (EN) or La Niña (LN) events, respectively, were established. The prediction of ENSO events is made by modeling at major global weather centers by atmosphere–ocean coupling models; however, no articles were found using decision tree classifier (DTC) for ENSO forecasting purposes. This modeling approach requires much less computational time and capacity. Furthermore, DTC can be sufficiently accurate for agricultural purposes. Thus, the objective of this research was to forecast as early as possible the El Niño and La Niña yearly events using a DTC technique from ONI data from 1950 to 2020. We used as input variables for DTC quarterly ONI values from 15 quarters prior the data of forecasting. The DTC showed an accuracy of 89%, 84%, and 78% to predict La Niña, El Niño, and neutral years, respectively, without training period. For validation, the accuracy was 100%, 79%, and 79% for La Niña, El Niño, and neutral years, respectively. The selected ONI quarters were July–August-September, January–February-March, and February–March-April of the previous year and January–February-March of the current year, allowing an 8-month advance forecast with an average accuracy of 78% (validation). |
doi_str_mv | 10.1007/s00704-022-03999-5 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2654825133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701629615</galeid><sourcerecordid>A701629615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-72be76130b68fde29e1f41a7667fb3fa7d7db5d5338d82142858ec9601e9949b3</originalsourceid><addsrcrecordid>eNp9kEtKA0EQhhtRMEYv4GrA9cR-P5YhJFEIulFw1_TMVIcOyUzsnggeyzN4MTsZwZ0UVFHF_1UVP0K3BE8Ixuo-5YR5iSktMTPGlOIMjQhnvORcs3M0wkSpUhn9domuUtpgjKmUaoSWiy5C7VIf2nUx3xZP4furK1zbFCt3alwBH9D2qTiko6SBOqTQtUUfAYp661IKPkC8RhfebRPc_NYxel3MX2YP5ep5-TibrsqaCd2XilagJGG4kto3QA0Qz4lT-RdfMe9Uo5pKNIIx3WhKONVCQ20kJmAMNxUbo7th7z527wdIvd10h9jmk5ZKwTUVhLGsmgyqtduCDa3v-ujqHA3sQt214EOeTxUmkhpJRAboANSxSymCt_sYdi5-WoLt0WE7OGyzw_bksD1CbIBSFrdriH-__EP9AHFOff8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654825133</pqid></control><display><type>article</type><title>Forecasting El Niño and La Niña events using decision tree classifier</title><source>Springer Nature</source><creator>Silva, Karita Almeida ; de Souza Rolim, Glauco ; de Oliveira Aparecido, Lucas Eduardo</creator><creatorcontrib>Silva, Karita Almeida ; de Souza Rolim, Glauco ; de Oliveira Aparecido, Lucas Eduardo</creatorcontrib><description>The El Niño-Southern Oscillation (ENSO) phenomenon affects the global climate by changing temperature and precipitation patterns mainly in tropical climatic regions and median latitudes. Such event strongly influences agricultural activities and crop yields. The Niño Oceanic Index (ONI) of the US National Oceanic and Atmospheric Administration (NOAA) describes and monitors ENSO intensity from ocean temperature measurements. When ONI in the Niño 3.4 region was + 0.5 °C above normal or − 0.5 °C below normal for 5 consecutive 3-month running averages, El Niño (EN) or La Niña (LN) events, respectively, were established. The prediction of ENSO events is made by modeling at major global weather centers by atmosphere–ocean coupling models; however, no articles were found using decision tree classifier (DTC) for ENSO forecasting purposes. This modeling approach requires much less computational time and capacity. Furthermore, DTC can be sufficiently accurate for agricultural purposes. Thus, the objective of this research was to forecast as early as possible the El Niño and La Niña yearly events using a DTC technique from ONI data from 1950 to 2020. We used as input variables for DTC quarterly ONI values from 15 quarters prior the data of forecasting. The DTC showed an accuracy of 89%, 84%, and 78% to predict La Niña, El Niño, and neutral years, respectively, without training period. For validation, the accuracy was 100%, 79%, and 79% for La Niña, El Niño, and neutral years, respectively. The selected ONI quarters were July–August-September, January–February-March, and February–March-April of the previous year and January–February-March of the current year, allowing an 8-month advance forecast with an average accuracy of 78% (validation).</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-022-03999-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Accuracy ; Aquatic Pollution ; Atmospheric models ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Classifiers ; Climate change ; Climate models ; Climate science ; Climatology ; Computer applications ; Computing time ; Crop yield ; Decision trees ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino forecasting ; El Nino phenomena ; El Nino-Southern Oscillation event ; Forecasting ; Global climate ; Global weather ; La Nina ; La Nina events ; Meteorological satellites ; Modelling ; Ocean models ; Ocean temperature ; Ocean temperature measurements ; Oceans ; Original Paper ; Precipitation (Meteorology) ; Precipitation patterns ; Southern Oscillation ; Temperature measurement ; Tropical climate ; Waste Water Technology ; Water Management ; Water Pollution Control ; Weather</subject><ispartof>Theoretical and applied climatology, 2022-05, Vol.148 (3-4), p.1279-1288</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-72be76130b68fde29e1f41a7667fb3fa7d7db5d5338d82142858ec9601e9949b3</citedby><cites>FETCH-LOGICAL-c358t-72be76130b68fde29e1f41a7667fb3fa7d7db5d5338d82142858ec9601e9949b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Silva, Karita Almeida</creatorcontrib><creatorcontrib>de Souza Rolim, Glauco</creatorcontrib><creatorcontrib>de Oliveira Aparecido, Lucas Eduardo</creatorcontrib><title>Forecasting El Niño and La Niña events using decision tree classifier</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>The El Niño-Southern Oscillation (ENSO) phenomenon affects the global climate by changing temperature and precipitation patterns mainly in tropical climatic regions and median latitudes. Such event strongly influences agricultural activities and crop yields. The Niño Oceanic Index (ONI) of the US National Oceanic and Atmospheric Administration (NOAA) describes and monitors ENSO intensity from ocean temperature measurements. When ONI in the Niño 3.4 region was + 0.5 °C above normal or − 0.5 °C below normal for 5 consecutive 3-month running averages, El Niño (EN) or La Niña (LN) events, respectively, were established. The prediction of ENSO events is made by modeling at major global weather centers by atmosphere–ocean coupling models; however, no articles were found using decision tree classifier (DTC) for ENSO forecasting purposes. This modeling approach requires much less computational time and capacity. Furthermore, DTC can be sufficiently accurate for agricultural purposes. Thus, the objective of this research was to forecast as early as possible the El Niño and La Niña yearly events using a DTC technique from ONI data from 1950 to 2020. We used as input variables for DTC quarterly ONI values from 15 quarters prior the data of forecasting. The DTC showed an accuracy of 89%, 84%, and 78% to predict La Niña, El Niño, and neutral years, respectively, without training period. For validation, the accuracy was 100%, 79%, and 79% for La Niña, El Niño, and neutral years, respectively. The selected ONI quarters were July–August-September, January–February-March, and February–March-April of the previous year and January–February-March of the current year, allowing an 8-month advance forecast with an average accuracy of 78% (validation).</description><subject>Accuracy</subject><subject>Aquatic Pollution</subject><subject>Atmospheric models</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Classifiers</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Crop yield</subject><subject>Decision trees</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino forecasting</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Forecasting</subject><subject>Global climate</subject><subject>Global weather</subject><subject>La Nina</subject><subject>La Nina events</subject><subject>Meteorological satellites</subject><subject>Modelling</subject><subject>Ocean models</subject><subject>Ocean temperature</subject><subject>Ocean temperature measurements</subject><subject>Oceans</subject><subject>Original Paper</subject><subject>Precipitation (Meteorology)</subject><subject>Precipitation patterns</subject><subject>Southern Oscillation</subject><subject>Temperature measurement</subject><subject>Tropical climate</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weather</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKA0EQhhtRMEYv4GrA9cR-P5YhJFEIulFw1_TMVIcOyUzsnggeyzN4MTsZwZ0UVFHF_1UVP0K3BE8Ixuo-5YR5iSktMTPGlOIMjQhnvORcs3M0wkSpUhn9domuUtpgjKmUaoSWiy5C7VIf2nUx3xZP4furK1zbFCt3alwBH9D2qTiko6SBOqTQtUUfAYp661IKPkC8RhfebRPc_NYxel3MX2YP5ep5-TibrsqaCd2XilagJGG4kto3QA0Qz4lT-RdfMe9Uo5pKNIIx3WhKONVCQ20kJmAMNxUbo7th7z527wdIvd10h9jmk5ZKwTUVhLGsmgyqtduCDa3v-ujqHA3sQt214EOeTxUmkhpJRAboANSxSymCt_sYdi5-WoLt0WE7OGyzw_bksD1CbIBSFrdriH-__EP9AHFOff8</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Silva, Karita Almeida</creator><creator>de Souza Rolim, Glauco</creator><creator>de Oliveira Aparecido, Lucas Eduardo</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220501</creationdate><title>Forecasting El Niño and La Niña events using decision tree classifier</title><author>Silva, Karita Almeida ; de Souza Rolim, Glauco ; de Oliveira Aparecido, Lucas Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-72be76130b68fde29e1f41a7667fb3fa7d7db5d5338d82142858ec9601e9949b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Aquatic Pollution</topic><topic>Atmospheric models</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Classifiers</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Crop yield</topic><topic>Decision trees</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino forecasting</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Forecasting</topic><topic>Global climate</topic><topic>Global weather</topic><topic>La Nina</topic><topic>La Nina events</topic><topic>Meteorological satellites</topic><topic>Modelling</topic><topic>Ocean models</topic><topic>Ocean temperature</topic><topic>Ocean temperature measurements</topic><topic>Oceans</topic><topic>Original Paper</topic><topic>Precipitation (Meteorology)</topic><topic>Precipitation patterns</topic><topic>Southern Oscillation</topic><topic>Temperature measurement</topic><topic>Tropical climate</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Karita Almeida</creatorcontrib><creatorcontrib>de Souza Rolim, Glauco</creatorcontrib><creatorcontrib>de Oliveira Aparecido, Lucas Eduardo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Karita Almeida</au><au>de Souza Rolim, Glauco</au><au>de Oliveira Aparecido, Lucas Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting El Niño and La Niña events using decision tree classifier</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>148</volume><issue>3-4</issue><spage>1279</spage><epage>1288</epage><pages>1279-1288</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>The El Niño-Southern Oscillation (ENSO) phenomenon affects the global climate by changing temperature and precipitation patterns mainly in tropical climatic regions and median latitudes. Such event strongly influences agricultural activities and crop yields. The Niño Oceanic Index (ONI) of the US National Oceanic and Atmospheric Administration (NOAA) describes and monitors ENSO intensity from ocean temperature measurements. When ONI in the Niño 3.4 region was + 0.5 °C above normal or − 0.5 °C below normal for 5 consecutive 3-month running averages, El Niño (EN) or La Niña (LN) events, respectively, were established. The prediction of ENSO events is made by modeling at major global weather centers by atmosphere–ocean coupling models; however, no articles were found using decision tree classifier (DTC) for ENSO forecasting purposes. This modeling approach requires much less computational time and capacity. Furthermore, DTC can be sufficiently accurate for agricultural purposes. Thus, the objective of this research was to forecast as early as possible the El Niño and La Niña yearly events using a DTC technique from ONI data from 1950 to 2020. We used as input variables for DTC quarterly ONI values from 15 quarters prior the data of forecasting. The DTC showed an accuracy of 89%, 84%, and 78% to predict La Niña, El Niño, and neutral years, respectively, without training period. For validation, the accuracy was 100%, 79%, and 79% for La Niña, El Niño, and neutral years, respectively. The selected ONI quarters were July–August-September, January–February-March, and February–March-April of the previous year and January–February-March of the current year, allowing an 8-month advance forecast with an average accuracy of 78% (validation).</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-022-03999-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2022-05, Vol.148 (3-4), p.1279-1288 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2654825133 |
source | Springer Nature |
subjects | Accuracy Aquatic Pollution Atmospheric models Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Classifiers Climate change Climate models Climate science Climatology Computer applications Computing time Crop yield Decision trees Earth and Environmental Science Earth Sciences El Nino El Nino forecasting El Nino phenomena El Nino-Southern Oscillation event Forecasting Global climate Global weather La Nina La Nina events Meteorological satellites Modelling Ocean models Ocean temperature Ocean temperature measurements Oceans Original Paper Precipitation (Meteorology) Precipitation patterns Southern Oscillation Temperature measurement Tropical climate Waste Water Technology Water Management Water Pollution Control Weather |
title | Forecasting El Niño and La Niña events using decision tree classifier |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20El%20Ni%C3%B1o%20and%20La%20Ni%C3%B1a%20events%20using%20decision%20tree%20classifier&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Silva,%20Karita%20Almeida&rft.date=2022-05-01&rft.volume=148&rft.issue=3-4&rft.spage=1279&rft.epage=1288&rft.pages=1279-1288&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-022-03999-5&rft_dat=%3Cgale_proqu%3EA701629615%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-72be76130b68fde29e1f41a7667fb3fa7d7db5d5338d82142858ec9601e9949b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2654825133&rft_id=info:pmid/&rft_galeid=A701629615&rfr_iscdi=true |