Loading…
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal an...
Saved in:
Published in: | International journal of advanced computer science & applications 2021, Vol.12 (12) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 12 |
creator | Chamorro-Atalaya, Omar Olivares-Zegarra, Soledad Paredes-Soria, Alejandro Samanamud-Loyola, Oscar Santos, Marco Anton-De los Santos, Juan Anton-De los Fierro-Bravo, Maritte Villanueva-Acosta, Victor |
description | In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service. |
doi_str_mv | 10.14569/IJACSA.2021.0121289 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655113427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655113427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-3366c325b3ee36a1c8e64340fdf10aa1c505514b63d1dcc5a6bedaf61b44b7643</originalsourceid><addsrcrecordid>eNotkNtqAjEQhpfSQsX6Br0I9HptzquXIra1CBXWQu-WbHZWI5rYJCv4Fn3kxkNuMjP5_pnJn2XPBA8JF3L8Ov-cTMvJkGJKhphQQkfju6xHiZC5EAW-v8SjnODi5zEbhLDF6bAxlSPWy_7K7gD-aAI0aAHKW2PXKG6869YbNN2pEExrtIrG2es7eLQCvbHmt4OAWucTDWjpoTE6miOg8hQi7JFr0RJ8cFbtkLINKp02KZzEaGLXJGkCZnZtLIA_zyzPVRvDU_bQql2Awe3uZ99vs9X0I198vc-nk0WuacFjzpiUmlFRMwAmFdEjkJxx3DYtwSrlAgtBeC1ZQxqthZI1NKqVpOa8LhLaz16ufQ_enb8Sq63rfNo2VFQmKWGcFoniV0p7F4KHtjp4s1f-VBFcXeyvrvZXZ_urm_3sH36Me4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655113427</pqid></control><display><type>article</type><title>Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>EZB Electronic Journals Library</source><source>Coronavirus Research Database</source><creator>Chamorro-Atalaya, Omar ; Olivares-Zegarra, Soledad ; Paredes-Soria, Alejandro ; Samanamud-Loyola, Oscar ; Santos, Marco Anton-De los ; Santos, Juan Anton-De los ; Fierro-Bravo, Maritte ; Villanueva-Acosta, Victor</creator><creatorcontrib>Chamorro-Atalaya, Omar ; Olivares-Zegarra, Soledad ; Paredes-Soria, Alejandro ; Samanamud-Loyola, Oscar ; Santos, Marco Anton-De los ; Santos, Juan Anton-De los ; Fierro-Bravo, Maritte ; Villanueva-Acosta, Victor</creatorcontrib><description>In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2021.0121289</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Academic achievement ; Accuracy ; Algorithms ; Artificial intelligence ; Attitudes ; Automation ; Business metrics ; Classification ; Colleges & universities ; Computer science ; Data mining ; Design ; Engineering ; Engineering education ; Engineering profession ; Higher education ; Higher education institutions ; Information technology ; Machine learning ; Self image ; STEM professions ; Students ; Supervised learning ; University students</subject><ispartof>International journal of advanced computer science & applications, 2021, Vol.12 (12)</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2655113427?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,38516,43895,44590</link.rule.ids></links><search><creatorcontrib>Chamorro-Atalaya, Omar</creatorcontrib><creatorcontrib>Olivares-Zegarra, Soledad</creatorcontrib><creatorcontrib>Paredes-Soria, Alejandro</creatorcontrib><creatorcontrib>Samanamud-Loyola, Oscar</creatorcontrib><creatorcontrib>Santos, Marco Anton-De los</creatorcontrib><creatorcontrib>Santos, Juan Anton-De los</creatorcontrib><creatorcontrib>Fierro-Bravo, Maritte</creatorcontrib><creatorcontrib>Villanueva-Acosta, Victor</creatorcontrib><title>Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students</title><title>International journal of advanced computer science & applications</title><description>In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.</description><subject>Academic achievement</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Attitudes</subject><subject>Automation</subject><subject>Business metrics</subject><subject>Classification</subject><subject>Colleges & universities</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Design</subject><subject>Engineering</subject><subject>Engineering education</subject><subject>Engineering profession</subject><subject>Higher education</subject><subject>Higher education institutions</subject><subject>Information technology</subject><subject>Machine learning</subject><subject>Self image</subject><subject>STEM professions</subject><subject>Students</subject><subject>Supervised learning</subject><subject>University students</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNotkNtqAjEQhpfSQsX6Br0I9HptzquXIra1CBXWQu-WbHZWI5rYJCv4Fn3kxkNuMjP5_pnJn2XPBA8JF3L8Ov-cTMvJkGJKhphQQkfju6xHiZC5EAW-v8SjnODi5zEbhLDF6bAxlSPWy_7K7gD-aAI0aAHKW2PXKG6869YbNN2pEExrtIrG2es7eLQCvbHmt4OAWucTDWjpoTE6miOg8hQi7JFr0RJ8cFbtkLINKp02KZzEaGLXJGkCZnZtLIA_zyzPVRvDU_bQql2Awe3uZ99vs9X0I198vc-nk0WuacFjzpiUmlFRMwAmFdEjkJxx3DYtwSrlAgtBeC1ZQxqthZI1NKqVpOa8LhLaz16ufQ_enb8Sq63rfNo2VFQmKWGcFoniV0p7F4KHtjp4s1f-VBFcXeyvrvZXZ_urm_3sH36Me4k</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chamorro-Atalaya, Omar</creator><creator>Olivares-Zegarra, Soledad</creator><creator>Paredes-Soria, Alejandro</creator><creator>Samanamud-Loyola, Oscar</creator><creator>Santos, Marco Anton-De los</creator><creator>Santos, Juan Anton-De los</creator><creator>Fierro-Bravo, Maritte</creator><creator>Villanueva-Acosta, Victor</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students</title><author>Chamorro-Atalaya, Omar ; Olivares-Zegarra, Soledad ; Paredes-Soria, Alejandro ; Samanamud-Loyola, Oscar ; Santos, Marco Anton-De los ; Santos, Juan Anton-De los ; Fierro-Bravo, Maritte ; Villanueva-Acosta, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-3366c325b3ee36a1c8e64340fdf10aa1c505514b63d1dcc5a6bedaf61b44b7643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Academic achievement</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Attitudes</topic><topic>Automation</topic><topic>Business metrics</topic><topic>Classification</topic><topic>Colleges & universities</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Design</topic><topic>Engineering</topic><topic>Engineering education</topic><topic>Engineering profession</topic><topic>Higher education</topic><topic>Higher education institutions</topic><topic>Information technology</topic><topic>Machine learning</topic><topic>Self image</topic><topic>STEM professions</topic><topic>Students</topic><topic>Supervised learning</topic><topic>University students</topic><toplevel>online_resources</toplevel><creatorcontrib>Chamorro-Atalaya, Omar</creatorcontrib><creatorcontrib>Olivares-Zegarra, Soledad</creatorcontrib><creatorcontrib>Paredes-Soria, Alejandro</creatorcontrib><creatorcontrib>Samanamud-Loyola, Oscar</creatorcontrib><creatorcontrib>Santos, Marco Anton-De los</creatorcontrib><creatorcontrib>Santos, Juan Anton-De los</creatorcontrib><creatorcontrib>Fierro-Bravo, Maritte</creatorcontrib><creatorcontrib>Villanueva-Acosta, Victor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamorro-Atalaya, Omar</au><au>Olivares-Zegarra, Soledad</au><au>Paredes-Soria, Alejandro</au><au>Samanamud-Loyola, Oscar</au><au>Santos, Marco Anton-De los</au><au>Santos, Juan Anton-De los</au><au>Fierro-Bravo, Maritte</au><au>Villanueva-Acosta, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2021</date><risdate>2021</risdate><volume>12</volume><issue>12</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2021.0121289</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2021, Vol.12 (12) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2655113427 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); EZB Electronic Journals Library; Coronavirus Research Database |
subjects | Academic achievement Accuracy Algorithms Artificial intelligence Attitudes Automation Business metrics Classification Colleges & universities Computer science Data mining Design Engineering Engineering education Engineering profession Higher education Higher education institutions Information technology Machine learning Self image STEM professions Students Supervised learning University students |
title | Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Learning%20through%20Classification%20Learner%20Techniques%20for%20the%20Predictive%20System%20of%20Personal%20and%20Social%20Attitudes%20of%20Engineering%20Students&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Chamorro-Atalaya,%20Omar&rft.date=2021&rft.volume=12&rft.issue=12&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2021.0121289&rft_dat=%3Cproquest_cross%3E2655113427%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-3366c325b3ee36a1c8e64340fdf10aa1c505514b63d1dcc5a6bedaf61b44b7643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655113427&rft_id=info:pmid/&rfr_iscdi=true |