Loading…

Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students

In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal an...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications 2021, Vol.12 (12)
Main Authors: Chamorro-Atalaya, Omar, Olivares-Zegarra, Soledad, Paredes-Soria, Alejandro, Samanamud-Loyola, Oscar, Santos, Marco Anton-De los, Santos, Juan Anton-De los, Fierro-Bravo, Maritte, Villanueva-Acosta, Victor
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page
container_title International journal of advanced computer science & applications
container_volume 12
creator Chamorro-Atalaya, Omar
Olivares-Zegarra, Soledad
Paredes-Soria, Alejandro
Samanamud-Loyola, Oscar
Santos, Marco Anton-De los
Santos, Juan Anton-De los
Fierro-Bravo, Maritte
Villanueva-Acosta, Victor
description In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.
doi_str_mv 10.14569/IJACSA.2021.0121289
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655113427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655113427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-3366c325b3ee36a1c8e64340fdf10aa1c505514b63d1dcc5a6bedaf61b44b7643</originalsourceid><addsrcrecordid>eNotkNtqAjEQhpfSQsX6Br0I9HptzquXIra1CBXWQu-WbHZWI5rYJCv4Fn3kxkNuMjP5_pnJn2XPBA8JF3L8Ov-cTMvJkGJKhphQQkfju6xHiZC5EAW-v8SjnODi5zEbhLDF6bAxlSPWy_7K7gD-aAI0aAHKW2PXKG6869YbNN2pEExrtIrG2es7eLQCvbHmt4OAWucTDWjpoTE6miOg8hQi7JFr0RJ8cFbtkLINKp02KZzEaGLXJGkCZnZtLIA_zyzPVRvDU_bQql2Awe3uZ99vs9X0I198vc-nk0WuacFjzpiUmlFRMwAmFdEjkJxx3DYtwSrlAgtBeC1ZQxqthZI1NKqVpOa8LhLaz16ufQ_enb8Sq63rfNo2VFQmKWGcFoniV0p7F4KHtjp4s1f-VBFcXeyvrvZXZ_urm_3sH36Me4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655113427</pqid></control><display><type>article</type><title>Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>EZB Electronic Journals Library</source><source>Coronavirus Research Database</source><creator>Chamorro-Atalaya, Omar ; Olivares-Zegarra, Soledad ; Paredes-Soria, Alejandro ; Samanamud-Loyola, Oscar ; Santos, Marco Anton-De los ; Santos, Juan Anton-De los ; Fierro-Bravo, Maritte ; Villanueva-Acosta, Victor</creator><creatorcontrib>Chamorro-Atalaya, Omar ; Olivares-Zegarra, Soledad ; Paredes-Soria, Alejandro ; Samanamud-Loyola, Oscar ; Santos, Marco Anton-De los ; Santos, Juan Anton-De los ; Fierro-Bravo, Maritte ; Villanueva-Acosta, Victor</creatorcontrib><description>In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2021.0121289</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Academic achievement ; Accuracy ; Algorithms ; Artificial intelligence ; Attitudes ; Automation ; Business metrics ; Classification ; Colleges &amp; universities ; Computer science ; Data mining ; Design ; Engineering ; Engineering education ; Engineering profession ; Higher education ; Higher education institutions ; Information technology ; Machine learning ; Self image ; STEM professions ; Students ; Supervised learning ; University students</subject><ispartof>International journal of advanced computer science &amp; applications, 2021, Vol.12 (12)</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2655113427?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,38516,43895,44590</link.rule.ids></links><search><creatorcontrib>Chamorro-Atalaya, Omar</creatorcontrib><creatorcontrib>Olivares-Zegarra, Soledad</creatorcontrib><creatorcontrib>Paredes-Soria, Alejandro</creatorcontrib><creatorcontrib>Samanamud-Loyola, Oscar</creatorcontrib><creatorcontrib>Santos, Marco Anton-De los</creatorcontrib><creatorcontrib>Santos, Juan Anton-De los</creatorcontrib><creatorcontrib>Fierro-Bravo, Maritte</creatorcontrib><creatorcontrib>Villanueva-Acosta, Victor</creatorcontrib><title>Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students</title><title>International journal of advanced computer science &amp; applications</title><description>In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.</description><subject>Academic achievement</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Attitudes</subject><subject>Automation</subject><subject>Business metrics</subject><subject>Classification</subject><subject>Colleges &amp; universities</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Design</subject><subject>Engineering</subject><subject>Engineering education</subject><subject>Engineering profession</subject><subject>Higher education</subject><subject>Higher education institutions</subject><subject>Information technology</subject><subject>Machine learning</subject><subject>Self image</subject><subject>STEM professions</subject><subject>Students</subject><subject>Supervised learning</subject><subject>University students</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNotkNtqAjEQhpfSQsX6Br0I9HptzquXIra1CBXWQu-WbHZWI5rYJCv4Fn3kxkNuMjP5_pnJn2XPBA8JF3L8Ov-cTMvJkGJKhphQQkfju6xHiZC5EAW-v8SjnODi5zEbhLDF6bAxlSPWy_7K7gD-aAI0aAHKW2PXKG6869YbNN2pEExrtIrG2es7eLQCvbHmt4OAWucTDWjpoTE6miOg8hQi7JFr0RJ8cFbtkLINKp02KZzEaGLXJGkCZnZtLIA_zyzPVRvDU_bQql2Awe3uZ99vs9X0I198vc-nk0WuacFjzpiUmlFRMwAmFdEjkJxx3DYtwSrlAgtBeC1ZQxqthZI1NKqVpOa8LhLaz16ufQ_enb8Sq63rfNo2VFQmKWGcFoniV0p7F4KHtjp4s1f-VBFcXeyvrvZXZ_urm_3sH36Me4k</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chamorro-Atalaya, Omar</creator><creator>Olivares-Zegarra, Soledad</creator><creator>Paredes-Soria, Alejandro</creator><creator>Samanamud-Loyola, Oscar</creator><creator>Santos, Marco Anton-De los</creator><creator>Santos, Juan Anton-De los</creator><creator>Fierro-Bravo, Maritte</creator><creator>Villanueva-Acosta, Victor</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students</title><author>Chamorro-Atalaya, Omar ; Olivares-Zegarra, Soledad ; Paredes-Soria, Alejandro ; Samanamud-Loyola, Oscar ; Santos, Marco Anton-De los ; Santos, Juan Anton-De los ; Fierro-Bravo, Maritte ; Villanueva-Acosta, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-3366c325b3ee36a1c8e64340fdf10aa1c505514b63d1dcc5a6bedaf61b44b7643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Academic achievement</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Attitudes</topic><topic>Automation</topic><topic>Business metrics</topic><topic>Classification</topic><topic>Colleges &amp; universities</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Design</topic><topic>Engineering</topic><topic>Engineering education</topic><topic>Engineering profession</topic><topic>Higher education</topic><topic>Higher education institutions</topic><topic>Information technology</topic><topic>Machine learning</topic><topic>Self image</topic><topic>STEM professions</topic><topic>Students</topic><topic>Supervised learning</topic><topic>University students</topic><toplevel>online_resources</toplevel><creatorcontrib>Chamorro-Atalaya, Omar</creatorcontrib><creatorcontrib>Olivares-Zegarra, Soledad</creatorcontrib><creatorcontrib>Paredes-Soria, Alejandro</creatorcontrib><creatorcontrib>Samanamud-Loyola, Oscar</creatorcontrib><creatorcontrib>Santos, Marco Anton-De los</creatorcontrib><creatorcontrib>Santos, Juan Anton-De los</creatorcontrib><creatorcontrib>Fierro-Bravo, Maritte</creatorcontrib><creatorcontrib>Villanueva-Acosta, Victor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamorro-Atalaya, Omar</au><au>Olivares-Zegarra, Soledad</au><au>Paredes-Soria, Alejandro</au><au>Samanamud-Loyola, Oscar</au><au>Santos, Marco Anton-De los</au><au>Santos, Juan Anton-De los</au><au>Fierro-Bravo, Maritte</au><au>Villanueva-Acosta, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2021</date><risdate>2021</risdate><volume>12</volume><issue>12</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2021.0121289</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2021, Vol.12 (12)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2655113427
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); EZB Electronic Journals Library; Coronavirus Research Database
subjects Academic achievement
Accuracy
Algorithms
Artificial intelligence
Attitudes
Automation
Business metrics
Classification
Colleges & universities
Computer science
Data mining
Design
Engineering
Engineering education
Engineering profession
Higher education
Higher education institutions
Information technology
Machine learning
Self image
STEM professions
Students
Supervised learning
University students
title Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Learning%20through%20Classification%20Learner%20Techniques%20for%20the%20Predictive%20System%20of%20Personal%20and%20Social%20Attitudes%20of%20Engineering%20Students&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Chamorro-Atalaya,%20Omar&rft.date=2021&rft.volume=12&rft.issue=12&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2021.0121289&rft_dat=%3Cproquest_cross%3E2655113427%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-3366c325b3ee36a1c8e64340fdf10aa1c505514b63d1dcc5a6bedaf61b44b7643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655113427&rft_id=info:pmid/&rfr_iscdi=true