Loading…

Prediction Intervals based on Doubly Type-II Censored Data from Gompertz Distribution in the Presence of Outliers

The study aims at getting the Bayesian predication intervals for some order statistics of future observations from the distribution of Gompertz (Gomp (a;ß)). Doubly Type-II censored data has assisted obtaining in the presence of single outlier that arose from the different same family members of dis...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications 2020, Vol.11 (3)
Main Authors: Alil, S. F. Niazi, R., Ayed
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title International journal of advanced computer science & applications
container_volume 11
creator Alil, S. F. Niazi
R., Ayed
description The study aims at getting the Bayesian predication intervals for some order statistics of future observations from the distribution of Gompertz (Gomp (a;ß)). Doubly Type-II censored data has assisted obtaining in the presence of single outlier that arose from the different same family members of distribution. Single outlier of type ß ß0 and ß+ ß0 are considered and bivariate independent prior density for a and ß are used. The problem of solving the Double integral to obtain the closed form for a and ß, leads us to use MCMC for calculating the Bayesian Predication Intervals. The use of numerical examples and statistical data has enable to properly present and describe the procedure. We conclude that the Bayesian predication intervals are shorter for y1 than y5 when we are increasing the ß0 value.
doi_str_mv 10.14569/IJACSA.2020.0110374
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655155496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655155496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-1bc1a1e8412810c0ca02c069e6ce028e831026b6b0b6cb7a4cb378dcf57d80853</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYsoOOb-gQ8Bnztv0iZNH0enszKY4ATfSpLeYsfWdEkqzF9v3bwv93I49xz4ouiewpymXOSP5euieF_MGTCYA6WQZOlVNGGUi5jzDK7Pt4wpZJ-30cz7HYyT5EzIZBId3xzWrQmt7UjZBXTfau-JVh5rMkpLO-j9iWxPPcZlSQrsvB0fyFIFRRpnD2RlDz268EOWrQ-u1cM5qu1I-EIyhnvsDBLbkM0Q9i06fxfdNGMHzv73NPp4ftoWL_F6syqLxTo2LEtDTLWhiqJMKZMUDBgFzIDIURgEJlEmFJjQQoMWRmcqNTrJZG0antUSJE-m0cMlt3f2OKAP1c4OrhsrKyY4p5ynuRhd6cVlnPXeYVP1rj0od6ooVGe-1YVv9ce3-ueb_AKa9m5y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655155496</pqid></control><display><type>article</type><title>Prediction Intervals based on Doubly Type-II Censored Data from Gompertz Distribution in the Presence of Outliers</title><source>Publicly Available Content Database</source><source>EZB Free E-Journals</source><creator>Alil, S. F. Niazi ; R., Ayed</creator><creatorcontrib>Alil, S. F. Niazi ; R., Ayed</creatorcontrib><description>The study aims at getting the Bayesian predication intervals for some order statistics of future observations from the distribution of Gompertz (Gomp (a;ß)). Doubly Type-II censored data has assisted obtaining in the presence of single outlier that arose from the different same family members of distribution. Single outlier of type ß ß0 and ß+ ß0 are considered and bivariate independent prior density for a and ß are used. The problem of solving the Double integral to obtain the closed form for a and ß, leads us to use MCMC for calculating the Bayesian Predication Intervals. The use of numerical examples and statistical data has enable to properly present and describe the procedure. We conclude that the Bayesian predication intervals are shorter for y1 than y5 when we are increasing the ß0 value.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2020.0110374</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Bayesian analysis ; Bivariate analysis ; Censored data (mathematics) ; Computer science ; Intervals ; Mathematics ; Mortality ; Outliers (statistics) ; Population</subject><ispartof>International journal of advanced computer science &amp; applications, 2020, Vol.11 (3)</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2655155496?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Alil, S. F. Niazi</creatorcontrib><creatorcontrib>R., Ayed</creatorcontrib><title>Prediction Intervals based on Doubly Type-II Censored Data from Gompertz Distribution in the Presence of Outliers</title><title>International journal of advanced computer science &amp; applications</title><description>The study aims at getting the Bayesian predication intervals for some order statistics of future observations from the distribution of Gompertz (Gomp (a;ß)). Doubly Type-II censored data has assisted obtaining in the presence of single outlier that arose from the different same family members of distribution. Single outlier of type ß ß0 and ß+ ß0 are considered and bivariate independent prior density for a and ß are used. The problem of solving the Double integral to obtain the closed form for a and ß, leads us to use MCMC for calculating the Bayesian Predication Intervals. The use of numerical examples and statistical data has enable to properly present and describe the procedure. We conclude that the Bayesian predication intervals are shorter for y1 than y5 when we are increasing the ß0 value.</description><subject>Bayesian analysis</subject><subject>Bivariate analysis</subject><subject>Censored data (mathematics)</subject><subject>Computer science</subject><subject>Intervals</subject><subject>Mathematics</subject><subject>Mortality</subject><subject>Outliers (statistics)</subject><subject>Population</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkFFLwzAUhYsoOOb-gQ8Bnztv0iZNH0enszKY4ATfSpLeYsfWdEkqzF9v3bwv93I49xz4ouiewpymXOSP5euieF_MGTCYA6WQZOlVNGGUi5jzDK7Pt4wpZJ-30cz7HYyT5EzIZBId3xzWrQmt7UjZBXTfau-JVh5rMkpLO-j9iWxPPcZlSQrsvB0fyFIFRRpnD2RlDz268EOWrQ-u1cM5qu1I-EIyhnvsDBLbkM0Q9i06fxfdNGMHzv73NPp4ftoWL_F6syqLxTo2LEtDTLWhiqJMKZMUDBgFzIDIURgEJlEmFJjQQoMWRmcqNTrJZG0antUSJE-m0cMlt3f2OKAP1c4OrhsrKyY4p5ynuRhd6cVlnPXeYVP1rj0od6ooVGe-1YVv9ce3-ueb_AKa9m5y</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Alil, S. F. Niazi</creator><creator>R., Ayed</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>Prediction Intervals based on Doubly Type-II Censored Data from Gompertz Distribution in the Presence of Outliers</title><author>Alil, S. F. Niazi ; R., Ayed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-1bc1a1e8412810c0ca02c069e6ce028e831026b6b0b6cb7a4cb378dcf57d80853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Bivariate analysis</topic><topic>Censored data (mathematics)</topic><topic>Computer science</topic><topic>Intervals</topic><topic>Mathematics</topic><topic>Mortality</topic><topic>Outliers (statistics)</topic><topic>Population</topic><toplevel>online_resources</toplevel><creatorcontrib>Alil, S. F. Niazi</creatorcontrib><creatorcontrib>R., Ayed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alil, S. F. Niazi</au><au>R., Ayed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction Intervals based on Doubly Type-II Censored Data from Gompertz Distribution in the Presence of Outliers</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2020</date><risdate>2020</risdate><volume>11</volume><issue>3</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>The study aims at getting the Bayesian predication intervals for some order statistics of future observations from the distribution of Gompertz (Gomp (a;ß)). Doubly Type-II censored data has assisted obtaining in the presence of single outlier that arose from the different same family members of distribution. Single outlier of type ß ß0 and ß+ ß0 are considered and bivariate independent prior density for a and ß are used. The problem of solving the Double integral to obtain the closed form for a and ß, leads us to use MCMC for calculating the Bayesian Predication Intervals. The use of numerical examples and statistical data has enable to properly present and describe the procedure. We conclude that the Bayesian predication intervals are shorter for y1 than y5 when we are increasing the ß0 value.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2020.0110374</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2020, Vol.11 (3)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2655155496
source Publicly Available Content Database; EZB Free E-Journals
subjects Bayesian analysis
Bivariate analysis
Censored data (mathematics)
Computer science
Intervals
Mathematics
Mortality
Outliers (statistics)
Population
title Prediction Intervals based on Doubly Type-II Censored Data from Gompertz Distribution in the Presence of Outliers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20Intervals%20based%20on%20Doubly%20Type-II%20Censored%20Data%20from%20Gompertz%20Distribution%20in%20the%20Presence%20of%20Outliers&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Alil,%20S.%20F.%20Niazi&rft.date=2020&rft.volume=11&rft.issue=3&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2020.0110374&rft_dat=%3Cproquest_cross%3E2655155496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-1bc1a1e8412810c0ca02c069e6ce028e831026b6b0b6cb7a4cb378dcf57d80853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655155496&rft_id=info:pmid/&rfr_iscdi=true