Loading…
An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method
The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regress...
Saved in:
Published in: | International journal of advanced computer science & applications 2020, Vol.11 (2) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3 |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 11 |
creator | HALOUI, Sara El, Abdeslam |
description | The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regression method. Following the statistical modeling, the final result allows us to know the variables that have a degree of significance lower than 5%, and therefore a significant relationship with the credit risk, namely the CSP (Socio-occupational category), the amount of credit requested, the repayment term and the type of credit. However, by implementing the second method, the place of residence variable was selected as an impacting variable for the chosen model. Overall, these features will help us better predict the risk of bank credit. |
doi_str_mv | 10.14569/IJACSA.2020.0110259 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655156089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655156089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEhX0BiwssU6xndhJ2IWohaKiolIkdpYTOzRtEgc7FeqOa3A9ToKbdDYz-vM1o_8AuMFoggPK4rv5c5K-JROCCJogjBGh8RkYEUyZR2mIzvs58jAKPy7B2NotcuXHhEX-CBySBi7brqxFBV-NkmXelbqBL1qq6u_n18L0KHZwVdrdPVxvFJzXbaVq1XSid-oCdk59EPnuWxgJp1VZl82wE42EM216faU-jbK2P666jZbX4KIQlVXjU78C77PpOn3yFsvHeZosvNwntPMEoUUWR0GBM5_FIcmCKFQ0VIz5USBESKQoKEHKxSYopBgrTAtCshy5fJJJ_wrcDndbo7_2ynZ8q_emcS85YZQ6TCiKnSsYXLnR1hpV8NY4KObAMeI9Zz5w5kfO_MTZ_wcbdnFz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655156089</pqid></control><display><type>article</type><title>An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method</title><source>Publicly Available Content Database</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>HALOUI, Sara ; El, Abdeslam</creator><creatorcontrib>HALOUI, Sara ; El, Abdeslam</creatorcontrib><description>The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regression method. Following the statistical modeling, the final result allows us to know the variables that have a degree of significance lower than 5%, and therefore a significant relationship with the credit risk, namely the CSP (Socio-occupational category), the amount of credit requested, the repayment term and the type of credit. However, by implementing the second method, the place of residence variable was selected as an impacting variable for the chosen model. Overall, these features will help us better predict the risk of bank credit.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2020.0110259</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Bank failures ; Banking industry ; Capital requirements ; Computer science ; Credit policy ; Credit risk ; Debt ; Insolvency ; International banking ; Laboratories ; Prediction models ; Regression models ; Regulation of financial institutions ; Risk ; Securities markets ; Statistical analysis ; Statistical models</subject><ispartof>International journal of advanced computer science & applications, 2020, Vol.11 (2)</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2655156089?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>HALOUI, Sara</creatorcontrib><creatorcontrib>El, Abdeslam</creatorcontrib><title>An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method</title><title>International journal of advanced computer science & applications</title><description>The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regression method. Following the statistical modeling, the final result allows us to know the variables that have a degree of significance lower than 5%, and therefore a significant relationship with the credit risk, namely the CSP (Socio-occupational category), the amount of credit requested, the repayment term and the type of credit. However, by implementing the second method, the place of residence variable was selected as an impacting variable for the chosen model. Overall, these features will help us better predict the risk of bank credit.</description><subject>Bank failures</subject><subject>Banking industry</subject><subject>Capital requirements</subject><subject>Computer science</subject><subject>Credit policy</subject><subject>Credit risk</subject><subject>Debt</subject><subject>Insolvency</subject><subject>International banking</subject><subject>Laboratories</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Regulation of financial institutions</subject><subject>Risk</subject><subject>Securities markets</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkEFOwzAQRS0EEhX0BiwssU6xndhJ2IWohaKiolIkdpYTOzRtEgc7FeqOa3A9ToKbdDYz-vM1o_8AuMFoggPK4rv5c5K-JROCCJogjBGh8RkYEUyZR2mIzvs58jAKPy7B2NotcuXHhEX-CBySBi7brqxFBV-NkmXelbqBL1qq6u_n18L0KHZwVdrdPVxvFJzXbaVq1XSid-oCdk59EPnuWxgJp1VZl82wE42EM216faU-jbK2P666jZbX4KIQlVXjU78C77PpOn3yFsvHeZosvNwntPMEoUUWR0GBM5_FIcmCKFQ0VIz5USBESKQoKEHKxSYopBgrTAtCshy5fJJJ_wrcDndbo7_2ynZ8q_emcS85YZQ6TCiKnSsYXLnR1hpV8NY4KObAMeI9Zz5w5kfO_MTZ_wcbdnFz</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>HALOUI, Sara</creator><creator>El, Abdeslam</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method</title><author>HALOUI, Sara ; El, Abdeslam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bank failures</topic><topic>Banking industry</topic><topic>Capital requirements</topic><topic>Computer science</topic><topic>Credit policy</topic><topic>Credit risk</topic><topic>Debt</topic><topic>Insolvency</topic><topic>International banking</topic><topic>Laboratories</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Regulation of financial institutions</topic><topic>Risk</topic><topic>Securities markets</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>online_resources</toplevel><creatorcontrib>HALOUI, Sara</creatorcontrib><creatorcontrib>El, Abdeslam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HALOUI, Sara</au><au>El, Abdeslam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2020</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regression method. Following the statistical modeling, the final result allows us to know the variables that have a degree of significance lower than 5%, and therefore a significant relationship with the credit risk, namely the CSP (Socio-occupational category), the amount of credit requested, the repayment term and the type of credit. However, by implementing the second method, the place of residence variable was selected as an impacting variable for the chosen model. Overall, these features will help us better predict the risk of bank credit.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2020.0110259</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2020, Vol.11 (2) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2655156089 |
source | Publicly Available Content Database; Free E-Journal (出版社公開部分のみ) |
subjects | Bank failures Banking industry Capital requirements Computer science Credit policy Credit risk Debt Insolvency International banking Laboratories Prediction models Regression models Regulation of financial institutions Risk Securities markets Statistical analysis Statistical models |
title | An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Prediction%20Model%E2%80%99s%20Credit%20Risk:%20The%20Implementation%20of%20the%20Backward%20Elimination%20and%20Forward%20Regression%20Method&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=HALOUI,%20Sara&rft.date=2020&rft.volume=11&rft.issue=2&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2020.0110259&rft_dat=%3Cproquest_cross%3E2655156089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655156089&rft_id=info:pmid/&rfr_iscdi=true |