Loading…

An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method

The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regress...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications 2020, Vol.11 (2)
Main Authors: HALOUI, Sara, El, Abdeslam
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3
cites
container_end_page
container_issue 2
container_start_page
container_title International journal of advanced computer science & applications
container_volume 11
creator HALOUI, Sara
El, Abdeslam
description The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regression method. Following the statistical modeling, the final result allows us to know the variables that have a degree of significance lower than 5%, and therefore a significant relationship with the credit risk, namely the CSP (Socio-occupational category), the amount of credit requested, the repayment term and the type of credit. However, by implementing the second method, the place of residence variable was selected as an impacting variable for the chosen model. Overall, these features will help us better predict the risk of bank credit.
doi_str_mv 10.14569/IJACSA.2020.0110259
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655156089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655156089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEhX0BiwssU6xndhJ2IWohaKiolIkdpYTOzRtEgc7FeqOa3A9ToKbdDYz-vM1o_8AuMFoggPK4rv5c5K-JROCCJogjBGh8RkYEUyZR2mIzvs58jAKPy7B2NotcuXHhEX-CBySBi7brqxFBV-NkmXelbqBL1qq6u_n18L0KHZwVdrdPVxvFJzXbaVq1XSid-oCdk59EPnuWxgJp1VZl82wE42EM216faU-jbK2P666jZbX4KIQlVXjU78C77PpOn3yFsvHeZosvNwntPMEoUUWR0GBM5_FIcmCKFQ0VIz5USBESKQoKEHKxSYopBgrTAtCshy5fJJJ_wrcDndbo7_2ynZ8q_emcS85YZQ6TCiKnSsYXLnR1hpV8NY4KObAMeI9Zz5w5kfO_MTZ_wcbdnFz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655156089</pqid></control><display><type>article</type><title>An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method</title><source>Publicly Available Content Database</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>HALOUI, Sara ; El, Abdeslam</creator><creatorcontrib>HALOUI, Sara ; El, Abdeslam</creatorcontrib><description>The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regression method. Following the statistical modeling, the final result allows us to know the variables that have a degree of significance lower than 5%, and therefore a significant relationship with the credit risk, namely the CSP (Socio-occupational category), the amount of credit requested, the repayment term and the type of credit. However, by implementing the second method, the place of residence variable was selected as an impacting variable for the chosen model. Overall, these features will help us better predict the risk of bank credit.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2020.0110259</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Bank failures ; Banking industry ; Capital requirements ; Computer science ; Credit policy ; Credit risk ; Debt ; Insolvency ; International banking ; Laboratories ; Prediction models ; Regression models ; Regulation of financial institutions ; Risk ; Securities markets ; Statistical analysis ; Statistical models</subject><ispartof>International journal of advanced computer science &amp; applications, 2020, Vol.11 (2)</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2655156089?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>HALOUI, Sara</creatorcontrib><creatorcontrib>El, Abdeslam</creatorcontrib><title>An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method</title><title>International journal of advanced computer science &amp; applications</title><description>The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regression method. Following the statistical modeling, the final result allows us to know the variables that have a degree of significance lower than 5%, and therefore a significant relationship with the credit risk, namely the CSP (Socio-occupational category), the amount of credit requested, the repayment term and the type of credit. However, by implementing the second method, the place of residence variable was selected as an impacting variable for the chosen model. Overall, these features will help us better predict the risk of bank credit.</description><subject>Bank failures</subject><subject>Banking industry</subject><subject>Capital requirements</subject><subject>Computer science</subject><subject>Credit policy</subject><subject>Credit risk</subject><subject>Debt</subject><subject>Insolvency</subject><subject>International banking</subject><subject>Laboratories</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Regulation of financial institutions</subject><subject>Risk</subject><subject>Securities markets</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkEFOwzAQRS0EEhX0BiwssU6xndhJ2IWohaKiolIkdpYTOzRtEgc7FeqOa3A9ToKbdDYz-vM1o_8AuMFoggPK4rv5c5K-JROCCJogjBGh8RkYEUyZR2mIzvs58jAKPy7B2NotcuXHhEX-CBySBi7brqxFBV-NkmXelbqBL1qq6u_n18L0KHZwVdrdPVxvFJzXbaVq1XSid-oCdk59EPnuWxgJp1VZl82wE42EM216faU-jbK2P666jZbX4KIQlVXjU78C77PpOn3yFsvHeZosvNwntPMEoUUWR0GBM5_FIcmCKFQ0VIz5USBESKQoKEHKxSYopBgrTAtCshy5fJJJ_wrcDndbo7_2ynZ8q_emcS85YZQ6TCiKnSsYXLnR1hpV8NY4KObAMeI9Zz5w5kfO_MTZ_wcbdnFz</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>HALOUI, Sara</creator><creator>El, Abdeslam</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method</title><author>HALOUI, Sara ; El, Abdeslam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bank failures</topic><topic>Banking industry</topic><topic>Capital requirements</topic><topic>Computer science</topic><topic>Credit policy</topic><topic>Credit risk</topic><topic>Debt</topic><topic>Insolvency</topic><topic>International banking</topic><topic>Laboratories</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Regulation of financial institutions</topic><topic>Risk</topic><topic>Securities markets</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>online_resources</toplevel><creatorcontrib>HALOUI, Sara</creatorcontrib><creatorcontrib>El, Abdeslam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HALOUI, Sara</au><au>El, Abdeslam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2020</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>The purpose of this paper is to verify whether there is a relationship between credit risk, main threat to the banks, and the demographic, marital, cultural and socio-economic characteristics of a sample of 40 credit applicants, by using the optimal backward elimination model and the forward regression method. Following the statistical modeling, the final result allows us to know the variables that have a degree of significance lower than 5%, and therefore a significant relationship with the credit risk, namely the CSP (Socio-occupational category), the amount of credit requested, the repayment term and the type of credit. However, by implementing the second method, the place of residence variable was selected as an impacting variable for the chosen model. Overall, these features will help us better predict the risk of bank credit.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2020.0110259</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2020, Vol.11 (2)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2655156089
source Publicly Available Content Database; Free E-Journal (出版社公開部分のみ)
subjects Bank failures
Banking industry
Capital requirements
Computer science
Credit policy
Credit risk
Debt
Insolvency
International banking
Laboratories
Prediction models
Regression models
Regulation of financial institutions
Risk
Securities markets
Statistical analysis
Statistical models
title An Optimal Prediction Model’s Credit Risk: The Implementation of the Backward Elimination and Forward Regression Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Prediction%20Model%E2%80%99s%20Credit%20Risk:%20The%20Implementation%20of%20the%20Backward%20Elimination%20and%20Forward%20Regression%20Method&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=HALOUI,%20Sara&rft.date=2020&rft.volume=11&rft.issue=2&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2020.0110259&rft_dat=%3Cproquest_cross%3E2655156089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-a25fb984f1b36972b487e57e66384aa72daf520e025207511e15f22bc0683d6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655156089&rft_id=info:pmid/&rfr_iscdi=true