Loading…

Multi-Label Classification using an Ontology

During these last few years, the problem of multi-label classification (ML) has been studied in several domains, such as text categorization. Multi-label classification is a main challenging task because each instance can be assigned to multiple classes simultaneously. This paper studies the problem...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications 2019, Vol.10 (12)
Main Authors: TRAORE, Yaya, MALO, Sadouanouan, BASSOLE, Didier, SERE, Abdoulaye
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During these last few years, the problem of multi-label classification (ML) has been studied in several domains, such as text categorization. Multi-label classification is a main challenging task because each instance can be assigned to multiple classes simultaneously. This paper studies the problem of Multi-label classification in the context of web pages categorization. The categories are defined in an ontology. Among the weakness of the multi-label classification methods, exist the number of positive and negative examples used to build the training dataset of a specific label. So the challenge comes from the huge number of labels combinations that grows exponentially. In this paper, we present an ontology-based Multi-label classification which exploit dependence between the labels. In addition, our approach uses the ontology to take into account relationships between labels and to give the selection of positive and negative examples in the learning phase. In the prediction phase, if a label is not predicted, the ontology is used to prune the set of descendant labels. The results of experimental evaluation show the effectiveness of our approaches.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2019.0101264