Loading…
Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: A review on source, concentration and removal
[Display omitted] According to the existing research results, this paper reviews the influent and effluent concentrations, migration and transformation, and influencing factors of quinolone antibiotics in sewage treatment plants (STPs) with activated sludge treatment processes. Animal breeding and s...
Saved in:
Published in: | Process safety and environmental protection 2022-04, Vol.160, p.116-129 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-f1e96a783544f5dbbf25dac42a5456ddf3566cc72fe93a2c4916c13654a6472e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-f1e96a783544f5dbbf25dac42a5456ddf3566cc72fe93a2c4916c13654a6472e3 |
container_end_page | 129 |
container_issue | |
container_start_page | 116 |
container_title | Process safety and environmental protection |
container_volume | 160 |
creator | Zou, Mengyuan Tian, Weijun Zhao, Jing Chu, Meile Song, Tiantian |
description | [Display omitted]
According to the existing research results, this paper reviews the influent and effluent concentrations, migration and transformation, and influencing factors of quinolone antibiotics in sewage treatment plants (STPs) with activated sludge treatment processes. Animal breeding and slaughtering wastewater, pharmaceutical wastewater and medical and domestic sewage may be the main sources of quinolone antibiotics. The compounds and concentrations of quinolone antibiotics in influents and effluents around the world are quite different, which is generally due to the difference in social and environmental factors in different regions, and the different treatment processes and operating parameters adopted. The migration and transformation of quinolone antibiotics is usually the result of the synergistic effect of sludge adsorption, biodegradation and photolysis. Sludge adsorption based on electrostatic interaction, hydrophobic forces and other mechanisms is the dominant route to remove quinolone antibiotics, but it does not reduce the total amount of the target antibiotics. An appropriate selection of conditions and control of process variables are beneficial to improve the removal of quinolone antibiotics by biodegradation with co-metabolism. Sources control, treatment processes improvement, fate understanding and prediction, monitoring strategies and risks assessment are potential options for improving the elimination and controlling the pollution of quinolone antibiotics in the future. |
doi_str_mv | 10.1016/j.psep.2022.02.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655167232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582022001094</els_id><sourcerecordid>2655167232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-f1e96a783544f5dbbf25dac42a5456ddf3566cc72fe93a2c4916c13654a6472e3</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWA8v4FXAW7fmvF3xphRPUBBBr0OazGrKdlOTbIuP4FubUm-8EQYGhu-f-edH6IKSMSVUXS_H6wTrMSOMjUkpyg_QiNZCVFw2k0M0Io2sKzlh5BidpLQkhFBW0xH6fhl8H7rQAzZ99gsfsrcJ-x4n2Jp3wDmCySvoM153hUh46_MHNjb7jcngcOoG9xeLwUJKkG7wFEfYeNjiUNaFIVq4wjb0tmDRZF-mpneFWYWN6c7QUWu6BOe__RS93d-9zh6r-fPD02w6ryxnk1y1FBpl6gmXQrTSLRYtk85YwYwUUjnXcqmUtTVroeGGWdFQZSlXUhglagb8FF3u9xajnwOkrJfFWl9OaqakpKpmnBWK7SkbQ0oRWr2OfmXil6ZE7yLXS72LXO8i16QU5UV0uxdB8V8ejzpZD-Vf5yPYrF3w_8l_AN6rjZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655167232</pqid></control><display><type>article</type><title>Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: A review on source, concentration and removal</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zou, Mengyuan ; Tian, Weijun ; Zhao, Jing ; Chu, Meile ; Song, Tiantian</creator><creatorcontrib>Zou, Mengyuan ; Tian, Weijun ; Zhao, Jing ; Chu, Meile ; Song, Tiantian</creatorcontrib><description>[Display omitted]
According to the existing research results, this paper reviews the influent and effluent concentrations, migration and transformation, and influencing factors of quinolone antibiotics in sewage treatment plants (STPs) with activated sludge treatment processes. Animal breeding and slaughtering wastewater, pharmaceutical wastewater and medical and domestic sewage may be the main sources of quinolone antibiotics. The compounds and concentrations of quinolone antibiotics in influents and effluents around the world are quite different, which is generally due to the difference in social and environmental factors in different regions, and the different treatment processes and operating parameters adopted. The migration and transformation of quinolone antibiotics is usually the result of the synergistic effect of sludge adsorption, biodegradation and photolysis. Sludge adsorption based on electrostatic interaction, hydrophobic forces and other mechanisms is the dominant route to remove quinolone antibiotics, but it does not reduce the total amount of the target antibiotics. An appropriate selection of conditions and control of process variables are beneficial to improve the removal of quinolone antibiotics by biodegradation with co-metabolism. Sources control, treatment processes improvement, fate understanding and prediction, monitoring strategies and risks assessment are potential options for improving the elimination and controlling the pollution of quinolone antibiotics in the future.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2022.02.013</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Activated sludge ; Adsorption ; Animal breeding ; Antibiotics ; Biodegradation ; Concentration ; Effluents ; Electrostatic properties ; Environmental factors ; Genetic transformation ; Household wastes ; Hydrophobicity ; Influents ; Medical wastes ; Migration ; Pharmaceutical industry wastes ; Photolysis ; Pollution control ; Process parameters ; Process variables ; Quinolone antibiotics ; Removal efficiency ; Risk assessment ; Sewage disposal ; Sewage treatment plant ; Sewage treatment plants ; Sludge ; Sludge treatment ; Synergistic effect ; Transformation ; Wastewater ; Wastewater treatment plants</subject><ispartof>Process safety and environmental protection, 2022-04, Vol.160, p.116-129</ispartof><rights>2022 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-f1e96a783544f5dbbf25dac42a5456ddf3566cc72fe93a2c4916c13654a6472e3</citedby><cites>FETCH-LOGICAL-c328t-f1e96a783544f5dbbf25dac42a5456ddf3566cc72fe93a2c4916c13654a6472e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zou, Mengyuan</creatorcontrib><creatorcontrib>Tian, Weijun</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Chu, Meile</creatorcontrib><creatorcontrib>Song, Tiantian</creatorcontrib><title>Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: A review on source, concentration and removal</title><title>Process safety and environmental protection</title><description>[Display omitted]
According to the existing research results, this paper reviews the influent and effluent concentrations, migration and transformation, and influencing factors of quinolone antibiotics in sewage treatment plants (STPs) with activated sludge treatment processes. Animal breeding and slaughtering wastewater, pharmaceutical wastewater and medical and domestic sewage may be the main sources of quinolone antibiotics. The compounds and concentrations of quinolone antibiotics in influents and effluents around the world are quite different, which is generally due to the difference in social and environmental factors in different regions, and the different treatment processes and operating parameters adopted. The migration and transformation of quinolone antibiotics is usually the result of the synergistic effect of sludge adsorption, biodegradation and photolysis. Sludge adsorption based on electrostatic interaction, hydrophobic forces and other mechanisms is the dominant route to remove quinolone antibiotics, but it does not reduce the total amount of the target antibiotics. An appropriate selection of conditions and control of process variables are beneficial to improve the removal of quinolone antibiotics by biodegradation with co-metabolism. Sources control, treatment processes improvement, fate understanding and prediction, monitoring strategies and risks assessment are potential options for improving the elimination and controlling the pollution of quinolone antibiotics in the future.</description><subject>Activated sludge</subject><subject>Adsorption</subject><subject>Animal breeding</subject><subject>Antibiotics</subject><subject>Biodegradation</subject><subject>Concentration</subject><subject>Effluents</subject><subject>Electrostatic properties</subject><subject>Environmental factors</subject><subject>Genetic transformation</subject><subject>Household wastes</subject><subject>Hydrophobicity</subject><subject>Influents</subject><subject>Medical wastes</subject><subject>Migration</subject><subject>Pharmaceutical industry wastes</subject><subject>Photolysis</subject><subject>Pollution control</subject><subject>Process parameters</subject><subject>Process variables</subject><subject>Quinolone antibiotics</subject><subject>Removal efficiency</subject><subject>Risk assessment</subject><subject>Sewage disposal</subject><subject>Sewage treatment plant</subject><subject>Sewage treatment plants</subject><subject>Sludge</subject><subject>Sludge treatment</subject><subject>Synergistic effect</subject><subject>Transformation</subject><subject>Wastewater</subject><subject>Wastewater treatment plants</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMoWA8v4FXAW7fmvF3xphRPUBBBr0OazGrKdlOTbIuP4FubUm-8EQYGhu-f-edH6IKSMSVUXS_H6wTrMSOMjUkpyg_QiNZCVFw2k0M0Io2sKzlh5BidpLQkhFBW0xH6fhl8H7rQAzZ99gsfsrcJ-x4n2Jp3wDmCySvoM153hUh46_MHNjb7jcngcOoG9xeLwUJKkG7wFEfYeNjiUNaFIVq4wjb0tmDRZF-mpneFWYWN6c7QUWu6BOe__RS93d-9zh6r-fPD02w6ryxnk1y1FBpl6gmXQrTSLRYtk85YwYwUUjnXcqmUtTVroeGGWdFQZSlXUhglagb8FF3u9xajnwOkrJfFWl9OaqakpKpmnBWK7SkbQ0oRWr2OfmXil6ZE7yLXS72LXO8i16QU5UV0uxdB8V8ejzpZD-Vf5yPYrF3w_8l_AN6rjZE</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Zou, Mengyuan</creator><creator>Tian, Weijun</creator><creator>Zhao, Jing</creator><creator>Chu, Meile</creator><creator>Song, Tiantian</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202204</creationdate><title>Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: A review on source, concentration and removal</title><author>Zou, Mengyuan ; Tian, Weijun ; Zhao, Jing ; Chu, Meile ; Song, Tiantian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-f1e96a783544f5dbbf25dac42a5456ddf3566cc72fe93a2c4916c13654a6472e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated sludge</topic><topic>Adsorption</topic><topic>Animal breeding</topic><topic>Antibiotics</topic><topic>Biodegradation</topic><topic>Concentration</topic><topic>Effluents</topic><topic>Electrostatic properties</topic><topic>Environmental factors</topic><topic>Genetic transformation</topic><topic>Household wastes</topic><topic>Hydrophobicity</topic><topic>Influents</topic><topic>Medical wastes</topic><topic>Migration</topic><topic>Pharmaceutical industry wastes</topic><topic>Photolysis</topic><topic>Pollution control</topic><topic>Process parameters</topic><topic>Process variables</topic><topic>Quinolone antibiotics</topic><topic>Removal efficiency</topic><topic>Risk assessment</topic><topic>Sewage disposal</topic><topic>Sewage treatment plant</topic><topic>Sewage treatment plants</topic><topic>Sludge</topic><topic>Sludge treatment</topic><topic>Synergistic effect</topic><topic>Transformation</topic><topic>Wastewater</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Mengyuan</creatorcontrib><creatorcontrib>Tian, Weijun</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Chu, Meile</creatorcontrib><creatorcontrib>Song, Tiantian</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Mengyuan</au><au>Tian, Weijun</au><au>Zhao, Jing</au><au>Chu, Meile</au><au>Song, Tiantian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: A review on source, concentration and removal</atitle><jtitle>Process safety and environmental protection</jtitle><date>2022-04</date><risdate>2022</risdate><volume>160</volume><spage>116</spage><epage>129</epage><pages>116-129</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>[Display omitted]
According to the existing research results, this paper reviews the influent and effluent concentrations, migration and transformation, and influencing factors of quinolone antibiotics in sewage treatment plants (STPs) with activated sludge treatment processes. Animal breeding and slaughtering wastewater, pharmaceutical wastewater and medical and domestic sewage may be the main sources of quinolone antibiotics. The compounds and concentrations of quinolone antibiotics in influents and effluents around the world are quite different, which is generally due to the difference in social and environmental factors in different regions, and the different treatment processes and operating parameters adopted. The migration and transformation of quinolone antibiotics is usually the result of the synergistic effect of sludge adsorption, biodegradation and photolysis. Sludge adsorption based on electrostatic interaction, hydrophobic forces and other mechanisms is the dominant route to remove quinolone antibiotics, but it does not reduce the total amount of the target antibiotics. An appropriate selection of conditions and control of process variables are beneficial to improve the removal of quinolone antibiotics by biodegradation with co-metabolism. Sources control, treatment processes improvement, fate understanding and prediction, monitoring strategies and risks assessment are potential options for improving the elimination and controlling the pollution of quinolone antibiotics in the future.</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.psep.2022.02.013</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-5820 |
ispartof | Process safety and environmental protection, 2022-04, Vol.160, p.116-129 |
issn | 0957-5820 1744-3598 |
language | eng |
recordid | cdi_proquest_journals_2655167232 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Activated sludge Adsorption Animal breeding Antibiotics Biodegradation Concentration Effluents Electrostatic properties Environmental factors Genetic transformation Household wastes Hydrophobicity Influents Medical wastes Migration Pharmaceutical industry wastes Photolysis Pollution control Process parameters Process variables Quinolone antibiotics Removal efficiency Risk assessment Sewage disposal Sewage treatment plant Sewage treatment plants Sludge Sludge treatment Synergistic effect Transformation Wastewater Wastewater treatment plants |
title | Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: A review on source, concentration and removal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quinolone%20antibiotics%20in%20sewage%20treatment%20plants%20with%20activated%20sludge%20treatment%20processes:%20A%20review%20on%20source,%20concentration%20and%20removal&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Zou,%20Mengyuan&rft.date=2022-04&rft.volume=160&rft.spage=116&rft.epage=129&rft.pages=116-129&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2022.02.013&rft_dat=%3Cproquest_cross%3E2655167232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-f1e96a783544f5dbbf25dac42a5456ddf3566cc72fe93a2c4916c13654a6472e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655167232&rft_id=info:pmid/&rfr_iscdi=true |